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Abstract

We study non-homogeneity of quotients of Prikry and tree Prikry forc-
ings with non-normal ultrafilters over some natural distributive forcing
notions.
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Introduction

Let (@, <g) be a k—distributive forcing notion of cardinality . For ¢ € @ let
Q/q={pe€Q|p=>qq}. Consider F,, ={D C Q/q| D is a dense open }, for
every q € Q. It is a k—complete filter over a set of cardinality x. Assuming large
cardinals, for example, if x is a k—compact cardinal, then every Fg/, extends
to a k—complete ultrafilter F¢), . Let F* = <F5/q |q € Q).

Force with the corresponding tree Prikry forcing Pz,. There will be a V' —generic
subset of @ in the extension.

We will study the resulting quotient forcing.

Our goal will be to prove the consistency of a strong occurrence of non-homogeneity

of this forcing:

Theorem. Consistently from k™ -supercompactness of k, for every non-trivial,
k-distributive forcing notion Q with |Q| = k, there exists a choice of measures
ﬁ*, such that the following property holds: Given two generic Prikry sequences
(Pn:n < w), {gn: n < w) for Pz, such that {(g,: n < w) € V[(py: n <w)], it

follows that (p,: n < w) = (gn: 1 < w).

*The work was partially supported by Israel Science Foundation Grant No. 58/14. We are
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like to thank the referee for the useful remarks and corrections.
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This extends the main result of Koepke, Rasch and Schlicht [5] which deals
with normal measures only.

In the second chapter, we force with the standard Prikry forcing Pp«, where
F* = F{ is a k—complete ultrafilter which extends the filter of dense open

subsets of Q. We will study the possible consequences of having—
(Gn:n <w) € V[(pn: n <w)]

for two disjoint generic Prikry sequences (p,: n < w), (gn: n < w). We will

prove that this induces a non-trivial projection of F*" onto F*, for some n < w.

Notations

1. Forcing: We force over the ground model V. Given a forcing notion
(@, <@) and elements p,q € Q, p >¢ g means “p extends ¢”. Let Q/q =
{p € Q: p >¢ q} be the cone of Q above ¢. If G C @ is generic over V,

~

then, for every P-name o, (O’) is the interpretation of ¢ in V [G].
~ G ~

2. Sequences: The set of finite increasing sequences of ordinals below a

cardinal « in denoted by [k]<“.

We extend this notation to strictly increasing finite sequences of elements

in a forcing notion (Q, <g): [Q]~

is the set of sequences (qo,...,qn),
where ¢;11 >¢ ¢; for every 0 < i < n — 1. The set [Q]" of increasing
sequences of length n is defined similarly. In the case where n = 0, [Q]O =

{()}, i.e., the set which includes only the empty sequence.

Given a sequence d@ = {(ag, - - - , an), we denote it’s length by lh(a@) = n+1.
The length of the empty sequence is 0. If (Q, <g) is a forcing notion and
@ € [Q]""", the maximal coordinate of @ is denoted by mc(@) = a,. If @

is the empty sequence, we set artificially me(@) = 0g.

We use the notation — for concatenation of sequences: Given sequences

t={(ag,...,an), s ={(Bo,--.,0m), let t™s be the sequence —

<a07"'7an7ﬁ03"'7ﬁm>

(of course, []= and [Q]<“ are not closed under concatenations).



3. Trees: If (T, <r) isatreec and t € T, then Succy(¢) is the set of immediate
successors of ¢ in T. We mostly work with (sub-trees of) trees of the form

[Q]%, where Q is a forcing notion, ordered by <,
(@, .-y an) < {(boy...,bm)
if and only if m > n, and for every 0 < ¢ < n,a; = b;.
Under these settings, for every t € T, denote Ty = {s € T: s <t or t < s}.
4. Ultrafilters: Given an ultrafilter V on x and a function f: k — k, denote
.V ={ACk: f7tA € V}. Also, for ultrafilters V, W, denote V <px W

if for some function f: k — K, V = f.W (this is the Rudin-Keisler order).
IV <gxg W <gg V, denote V =gx W.

Given a measure U on a cardinal x and a function f: x =V, [f];, is the

standard equivalence class of f in the ultrapower construction.

Preliminaries

We assume familiarity with forcing and large cardinals. We will use some stan-
dard arguments about distributive forcing notions, quotient forcings and limits
of ultrafilters. For sake of completeness, we provide the relevant details in this

section.

0.1 Distributivity

Definition 0.1.1. Given an uncountable cardinal k, we say that a forcing notion

(Q, <q) is k-distributive if forcing with () adds no new < k sequences of ordinals.
The following is well known (See, for example, [4]):

Proposition 0.1.2. Let k be an uncountable cardinal, and (Q,<g) be a sepa-

rative forcing notion. The following are equivalent:
1. Q is k-distributive.

2. For every £ < k and a sequence (Dy: a < &) of dense open subsets of Q,
No.
a<é

is dense and open.



3. For every £ < Kk, q € Q and for every sequence (D, : o < &) of dense open

subsets of Q above q,

N

a<é

is dense and open above q.

Remark 0.1.3. The last proposition will be applied as follows: Given a separ-

ative, k-distributive forcing notion, (Q,<q), and ¢ € Q, let —
F, ={E C Q/q: E contains a dense open subset D of Q/q}

where Q/q={p € Q: p >q q}. Then F, is a k-complete filter on Q/q. Under a
suitable large cardinal assumption, Fy can be extended to a k-complete ultrafilter,

Fy.
The following lemma will be useful later:

Lemma 0.1.4. Let Q be a separative, k-distributive notion of forcing of cardi-

nality k. Then Q can be partitioned to k-many disjoint dense subsets.

Proof. Assume that Q = {go: @ < k}. For every A C Q with |A| < k, let —

E(A)= N{peQ:p>q qor p,q are incompatible}
qeA

Then F(A) is a dense and open subset of ), disjoint from A.

Let G: k — kX K be Godel’s Pairing function. We define a sequence (pe: & <
k) as follows: Assume that 7 < k and (pe: § < 1) were defined. Let us define p,,.
Assume that G(n) = (o, 8). Choose p,, € E ({pe: £ < n}) such that p, extends
gg. This finishes the construction.

Set, for every a < k, Do = {pe: 3B < k G(§) = (o, 8)} . We claim that
D, is dense for every a < k. Indeed, given gz € @, let £ = G~ (, 8). Then
pe € D, and extends gg.

By our construction, the dense sets (D,,: a < k) are pairwise disjoint.

0.2 Quotient Forcings

Suppose that P,Q are two separative forcing notions, such that every generic

extension V' [G] for P, contains a generic set H € V [G] for Q over V. Under



these settings, we describe a forcing notion in V [H] whose generic extensions
could be obtained by forcing directly with P over V.

We assume here that @ is a complete boolean algebra. This will not be the
case in further applications, but we can always replace ) with it’s completion,
RO(Q) (i.e., the complete boolean algebra in which @ densely embeds. To be
precise, we should remove from RO(Q) the strongest element, 1RO(Q))'

Definition 0.2.1. A projection w: P — Q is a function which satisfies:
1. If p’ extends p, then w(p’) extends w(p).
2. For every p € P, " (P/p) is dense above 7(p) in Q.

We state some standard properties, which are presented with more details

in [4], for example.

Proposition 0.2.2. Assume that P,Q are separative forcing notions. Suppose
that H is a P-name for a generic set for Q, and this is forced by the weakest

condition in P. Define a function m: P — Q as follows: for every p € P,

w(p) =Y {a€Q:plrqe H}
Then 7 s a projection.

Definition 0.2.3. Suppose that P, Q are separative forcing notions, and w: P —
Q is a projection. Assume that H is Q-generic over V. Define, in V [H]|, the
quotient forcing, P/H = {p € P: n(p) € H}, ordered by the order induced from
P.

Proposition 0.2.4. Let P,Q be as in the last definition. Then every generic
set G for P/H is generic for P over V as well. Also, V [H][G] =V [G].

Lemma 0.2.5. Let P,Q be as above. Assume that H is a P-name, forced by the
weakest condition in P to be Q-generic over V. Let m: P — @ be the induced

projection. Let G be P-generic over V, and (H) = H. Then for every generic

~

set G' for the quotient forcing P/H over V [H|, (H) =H.
~ G/

~

h € H. Therefore 7(p) € H, and 7(p) extends h; Thus, h € H. So in V [G],

Proof. Assume first that in V [G'], h € (H) . Then for some p € G', p I+
G/

(H) C H. But (H) , H are QQ-generic over V| so (H) =H. O
G’ leZ ez

~ ~ ~



0.3 Limits of Ultrafilters

Definition 0.3.1. Assume that U, W and V,, for every a < k, are ultrafilters

on k. Then U = W-lim(V,,: a < k) means that, for every X C &,
XelU = {a<kr: XeV,}eW

Definition 0.3.2. A sequence (V,,: o < k) of ultrafilters on k is called discrete,

if there exists a partition (Ay: a < K) of k such that A, € V4, for every a < k.
The next lemma is well known:

Lemma 0.3.3. Every k-sequence of pairwise distinct normal ultrafilters on k

1s discrete.

Definition 0.3.4. Let U, W be ultrafilters on k. We say that W <gp U (Rudin-
Frolik order) if there exists a discrete sequence (V,: a < k) of ultrafilters on s,

such that U = W-lim{Vy: a < k).

The following lemmas are well known as well; For sake of completeness, we

provide the proof here.

Lemma 0.3.5. W <grp U — W <gpg U.

Proof. Suppose that (V,,: a < k) is a discrete sequence of ultrafilters such that
U=W-1m(V,: a < k). Let (A,: a < k) be a partition of k, such that A, € V,
for every a < k.

Let h: k — Kk be the function h(z) = o <= x € A,, ie., h(z) is the
unique index « such that © € A,. Then X € W <<= h'X € U, since
h=1(X) = U Aa. In particular, W <px U. Now, U,W cannot be Rudin-
Keisler equi%zeil)ént: Else, there exists f: kK — k such that f,W =U, and f ] A
is injective for some A € W; Therefore, (ho f), W =W, so ho f is the identity

on a set in W. In particular, h | B is an injection for some set B € U, A

contradiction. O

Proposition 0.3.6. Suppose that U = W-lim{V,,: o < k), where (V,,: a < k)

is a discrete sequence of ultrafilters measures on k.



Let My ~ Ult(V,U),Mw ~ Ult(V,W) be the ultrapowers of U, W, with

corresponding elementary embeddings ju, jw. Define V' € My, as follows —
V' =jw (Va: a < k) ([Ld]y,)

Then V' is a measure on jw (k) and My ~ Ult(Mw,V'). Moreover, if j' is the

ultrapower embedding of V', then j' o jw = ju.

My ~ Ult (M, V')

A

VI My

Proof. By elementarity, V' is a measure on jw (k). It suffices to prove that
Ult (V,U) and Ult (Mw,V’) are isomorphic, and thus have the same tran-
sitive collapse. We define an isomorphism, definable in V, ¢: Ult (V,U) —
Ult (Mw, V'), as follows:

¢ (1) = biw (v

for every function f with domain . Let us prove that ¢ is well-defined, and an
isomorphism. Suppose that [f],, = [g],;. Then {a < k: f(a) = g(a)} € U, and
in the ultrapower by W,

{a <jw(x): jw(f)(@) = jw(g)(a)} € V'

thus, [jw (f)ly = Uw(9)]y-

Proving elementarity is similar. Let us prove that ¢ is onto. Assume that
[fly, € Ult (M, V"). For some g: k =V, f = [g]y;,. Since f: jw (k) = My is
a function, we can assume without loss of generality that, for every 8 < &, g(53)
is a function from x to V. Now, define f’: k — & as follows: For every a < k,
set f'(o) = g(Ba)(a), where B, is the unique index § such that o € Ag. We
claim that ¢([f'];;) = [f]y. It suffices to prove that —

{o <jw (k) jw (f)(@) = [gly (@)} € V'

{B<r:{a<n: fla)=9g(B)(a)} € Vst eW



This holds: Indeed, fix 8 < k. Then {a < k: f'(a) = g(8)(a)} D Ag € V.
Let us prove the equality j'ojyr = jy. Denote, for every z € V, the function

¢ k — V), defined as follows: Va < k, ¢;(a) = x. Now, for every z € V,

¢lealyy) = liw (ca)lyr = 3" 0 jw (x)

where the last equality can be easily checked (we slightly abused the notation
and identified elements in Ult(My,, V') with their image under the transitive

collapse). O



Chapter 1

Tree Prikry Forcing

1.1 Definitions and Basic Properties

Definition 1.1.1. k is a k-compact cardinal if every k-complete filter on k can

be extended to a k-complete ultrafilter on k.

Let x be a k-compact cardinal. Consider a r-distributive forcing notion
(@, <q) of cardinality x. Let [Q]<“ be the full tree of finite <¢g-increasing

sequences of elements of @, ordered by end-extensions, i.e.,
Q<Y ={(v1,...,vm) n<wry,e€Qand vy <Qrr <qQ...<Q Vn}

For t = {a1,...,an),8 = (b1,...,by) € [Q]<%, denote t < s if n < m and for
every i = 1,...,n, a; = b;. For every non-empty sequence t = (ai,...,a,) €
[Q]<Y, set mc(t) = ap. If t = (), set artificially mc(¢) = Og, where Og is the

weakest condition of Q.

Remark 1.1.2. If Q is separative, then, for every q € Q, |Q/q| = k. Indeed,
else, if Q/q = {pa: @ < &} for some £ < kK, define D, = {p € Q:p >¢
Pa 01D L pa}. Since Q is separative, D, is dense and open for every o < &.

Then (Q/q) N () Do =0, a contradiction.
a<é

For every t € [Q]<%, let F; be the k-complete filter generated by the subsets

of @, which are dense and open above mc(t) —

Fy ={E C Q/mc(t) : D C E for some dense open subset D of Q/mc(t)}



By k-compactness of k, for every ¢ € [Q]<%, there exists a k-complete ultrafilter,
Fy, which extends Fy. Denote F* = (Fy: ¢ € [Q]™“) (in the next sections, we

*-supercompactness of , and choose F;* more carefully).

will assume &
Let us present a Prikry type forcing Pz,. We follow the presentation and

notations from [2].

Definition 1.1.3. Let t € [Q]<¥. A tree T C [Q]<¥ is a (F¥: s € [Q]<¥)-tree
with trunk t if —

1. T C [Q]™Y, ordered by end-extensions.
2. t is the trunk of T, i.e., for every s € T, s <t ort < s.
3. For every s € T such thatt < s, Sucer(s) ={q€ Q: s™{(q) € T} € Fr.

Let <Pﬁ* ,

T C[Q]<¥ is a (Ff: s € [Q]<¥)-tree with trunk ¢t. We say that (t,T) extends
(s,8) if T C S (in particular, t t> s). If, in addition, ¢ = s, we say that (¢,T) is

<, <*), consist of elements of the form (¢, T"), where ¢ € [Q]<“ and

a Direct Extension of (s, S), and denote it by (¢t,T) >* (s, 5).
We will show some Prikry-type properties of (Pz.,<,<*). First, we define

the Prikry sequence corresponding to a generic set G C P.

Lemma 1.1.4. Let G be a Pﬁ* -generic set. Then —
C=U{te|Q]~":3T (+,T) € G}

is a <g-increasing w-sequence (we refer to it as the Prikry sequence corre-
sponding to G). Moreover, V [G] = V [C], and V [G] contains an w-sequence of

ordinals, which is cofinal in k.

Proof. It’s straightforward to show that C is a <-increasing w-sequence. Also,
G eVI[C], since G={(t,T) € Pp.:Vn<w C [ neT}.

It remains to show that x changes it’s cofinality in V' [G]. In V, fix a bijection
f:Q — k. Let (p,: n < w) € V[G] be the Prikry sequence corresponding to
G. We show that {f(pn): n < w} is cofinal in x in V [G]. Let a < k. Define,
in V, the set D, = {{¢t,T): f(mc(t)) > a}. It suffices to prove that D, is
dense in Pg,. Indeed, take arbitrary (t,T) € Pz.. We note that f~'"« is of
cardinality < s, so f~"a ¢ F¥. Now, choose ¢ € Succr(t) with f(q) > .
Then (t™{q),T) € D.

10



O

Lemma 1.1.5. LetT C [Q]<% be a a (Ff: s € [Q]<%)-tree with trunkt. Assume
that « < Kk, and f: T — « is some function. Then there exists a (F¥: s €
[Q]<¥)-tree S C T with trunk t, such that, for every n < w, f | Lev,(S) is

constant.

Proof. Assume for simplicity that ¢ = (). First, let us prove the claim for each
n < w separately. This is clear for n = 0. We proceed by induction on n < w.
Assume the claim holds for n, and let us prove it for n+1. For every ¢ € Levy(T),
let Ty = {{q1,. .., qm) € [Q~“: (¢, q1,-...qm) € T}. Let fq: Ty — a be defined
as follows: f, ((g1,---,qm)) = f ({¢,q1,---,qm)). Then there exists S, C T}, and
agy < a such that f, ({q1,...,qn)) = aq4 for every (q1,...,¢,) € S;. Now, take
Ae Fy, A C Levy(T) such that, for some 5 < k, oy = 8 for every g € A.

Define S = {{¢,q1,...,¢m): ¢ € Aand (q1,...,¢m) € Sq}. Let us claim that
f I Levp4+1(S) is constant. Let (¢,q1,...,¢n) € S. Then {(¢1,...,qn) € Sy, s0
flea,- - q0) =g =B

Now, assume that for every n < w there exists a (F¥: s € [Q]<“)-tree,

Sp C T, such that f | Lev,(S,) is constant. Let S = () S,. Then S is a
n<w

(F7:s € [Q]<%)-tree as desired. O
Now, in a standard fashion, we conclude the following;:

Lemma 1.1.6. (The Prikry Condition) Let (t,T) € Pg. and o be a statement
in the forcing language. Then there exists a direct extension (t,S) >* (t,T)
such that (t,S) || o.

Corollary 1.1.7. Pz, preserves all cardinals.
The next lemmas will be applied in the next section.

Lemma 1.1.8. Assume that As € F¥ for every s € [Q]<¥, and {pp: n < w)

is a Prikry sequence for Pz,.. Then for some ng < w, and for every n > ng,

Pr+1 € Alpg,...pn) -

Proof. Assume that G C Pg. is the generic set corresponding to (p,: n < w).

Define a dense set as follows:

D= {(t,T) € Pp.: VscT,s>t— Succr(s) C Ay}

11



D is dense in Pp.. Indeed, given a condition (t,7) € Pp.,

define a (F7¥: s €
[Q]<“)-tree, T', such that for every s > ¢, Succy(s) C Sucer(s) N As (Apply-
ing the intersections inductively, shrinking T level-by-level). Then (¢t,T7") € D
extends (¢,T).

Now, take (s, S) € GND. Then for every n > lh(s), pn+1 € Succs ({po, - --,pn)) C
A 0

P05+ Pn)

Lemma 1.1.9. Assume that there exists a partition of Q, (As: s € [Q]),
such that A; € FY, for every s € Q=Y. Let (pn:n < w), (gn: n < w) be a pair
of different Prikry sequences for Pp« such that (g,: n < w) € V [{pn: n < w)].
Then, for every i < w there exists some k < w, k > i, such that {pn: k <n <

wh{gn: k <n < w} are disjoint.

Proof. First, apply the last lemma: Let 79 < w be such that, for every k > i,
Pyl € Ao, pe)> and qei1 € Aggy, . q)- We can assume that ig > 4, or else,
enlarge ig.

Assume for contradiction, that for every k > i, {pn: k <n <w}, {gn: k<
n < w} are not disjoint; So p, = ¢, for some n,m > k. In particular,
Alpo,....pn_y) 18 N0t disjoint from A 411,50 (Pos -+ Pr—1) = (o -, Gm—1)-

This could be done for every k > io; Therefore, (p,: n < w) = (¢n: n < w). O

Our next observation is that, given G C P, generic over V, there exists

H € V[G] such that H is Q-generic over V.

Lemma 1.1.10. Given a generic Prikry sequence (p,: n < w) for Pg., define
HeV[pn:n<w)], H={¢€ Q:3In < wq < p,}. Then H is Q generic
over V. In particular, if (Q,<q) is a separative forcing notion, then Pz, is not
minimal, i.e., every generic extension, obtained by forcing with Pz, over V, has

a non-trivial intermediate model.

Proof. First, we prove that H is Q-generic over V. The only non-trivial property
is that, for every D C @ dense and open, D N H # (. Indeed, given such D,
define, for every s € [Q]*, A, = DN (Q/mc(s)). Then A, € FZ, and thus, for

some ng, and for every n > ng, p, € Ay, y- In particular, p, € D.

cesPn—1
Assuming that @ is separative, it follows that H ¢ V. Moreover, V [H] C

=

V [(pn: n < w)], since, in V' [H],  is still regular. Thus, Pj. is not minimal. [J

12



Remark 1.1.11. By [5], Pz. might be minimal. Consider (Q,<qg) = (K, €).
Assume that (Uy: o < K) is a sequence of pairwise distinct normal ultrafil-
ters. Set, for every t € [/@]<w, Ff = Upery (more precisely, Fy = {AN
(k\mc(t)): A € Upewy}). Under these conditions, it is proved in [5] that
every generic extension, which is obtained by forcing with Pz, over V, doesn’t
have non-trivial intermediate models, i.e., Pz, is minimal. In particular, if

(Pn: n <w) and {g,: n < w) are generic Prikry sequences for Pg., such that —
(gn:n <w) € Vpy:n <w)

then—
VIign:n<w)] =V [{pn: n <w)]

By lemma [1.1.10} there exists a projection 7: Pm — RO(Q). Given an
arbitrary generic set H C RO(Q) over V, the quotient forcing Py /H is non-

trivial, since & is still regular in V' [H].

Definition 1.1.12. We say that a forcing notion (P, <p) is cone-homogeneous,
if for every a,b € P there are extensions a’ >p a, b’ >p b such that P/a’ and

P/ are isomorphic.

Proposition 1.1.13. Let H C RO(Q) be generic over V. Suppose that P, /H
is cone-homogeneous. Then there are two different Prikry sequences for Pg.,

(Pn:n < w), {gn:n < w), such that {gn: n < w) €V [(pn: n < w)].

Proof. Since Pz, /H is non-trivial, there are incompatible elements (po, . . . pn, T,
(qo,- .- qm,S) in Pz, /H. By extending those elements, we can assume that, for
some i < w, p; # q;- By cone-homogeneity, there exists an automorphism
o € V [H], mapping the cone of Pz./H above an extension of (po,...pn,T),
to the cone above some extension of (qo,...Gm,S). Thus, there are pairs of
Prikry sequences for Pz, /H, (pn: n < w), {(gn: n < w), such that ¢ maps the
generic set (of P, /H, over V [H]) corresponding to (p, : n < w) into the generic
set corresponding to {(g,: n < w) (this follows by extending one sequence to a
generic Prikry sequence for the quotient forcing, and then applying the point-

wise image under o). Since o € V [H], (¢gn: n < w) € V[H][(pn: n <w)] =

13



V [{pn: n < w)]. It’s clear that those sequences are different (because they have

different initial segments). O

Remark 1.1.14. The same argument as in the last proposition proves that if
Py, itself is cone-homogeneous, then there are two different Prikry sequences

for Pp., (pn:n <w), (gn: n <w), such that {(g,: n <w) € V [{pn: n <w)].

1.2 Prikry Sequences Inside Generic Extensions

Assume that (p,,: n < w) is Pg.-generic over V. It’s natural to ask if V [(p,: n < w)]
contains another Prikry sequence for Pg., (g,: n < w). If it does, could
(pn:n < w) and (g,: n < w) be disjoint, or “far” from each other in any
other way?

By [5], there exists a variation of Pgz, which is minimal, i.e., every generic
extension has no non-trivial intermediate models. We would like to consider

variations of Pz

. which are not necessarily minimal, but still have the following

property: If (p,,: n < w),{(gn: n < w) are Prikry sequences for Pj., and—

(Gn:n <w) €V[(pn:n <w)]

then—

(pn:n <w)={gy:n<w)

In particular, every generic extension, obtained by forcing with Pz,, doesn’t

Fxo
have non-trivial intermediate models which are themselves generic extensions,
obtained by forcing with Pz, over V.

As a first example, we consider the case where the measures F* are pairwise

distinct and normal. Then, we will consider the general case.

1.2.1 Trees With Pairwise Distinct Normal Measures

Suppose that (Q, <q) = (k,€), and (Fy: t € [5]~*) is a sequence of pairwise
distinct normal ultrafilters. We note that, for every ¢t € [k]<“, any dense open
set of @)/mc(t) is an interval of ordinals of the form [o, k) where o > mc(?).
Thus, any normal ultrafilter on x will extend the xk-complete filter of dense and

open sets above mc(t). Under these settings, we have the following property:
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Theorem 1.2.1. Suppose that (Q, <q) = (k,€), and U = (U;: t € [5]*) is a
sequence of pairwise distinct normal ultrafilters. Consider the forcing Py (which
is the forcing Pg. , where, for everyt € (K]S, Fr = {AN(Q/mc(t)) : A € Uy}).

Then for every pair of Prikry sequences for Py, (pn:n < w), (¢n:n < w),
(gn:n<w) eVpp:n<w)] <= (pp:n<w)={g,:n<w)

Proof. Since (U;: t € [Q]°*) are pairwise distinct normal ultrafilters, there
exists a partition (A,: s € [Q]™“) of &, such that A, € U,. Assume by con-
tradiction that (p,: n < w), (¢gn: n < w) are two Prikry sequences, such that
(gn:n <w) €V [(py:n<w).

Apply 1emmato find 79 < w such that for every i > ig, qiy1 € Agq,....q0)
and pi11 € Agp,,...p,)- APDlY lemmamm find k > ip such that {p,: k <n <
w},{gn: k < n < w} are disjoint. Denote by G the generic set over V which
corresponds to (p,: n < w). Let o be a P-name for the sequence {g,: n < w).

Let (r,T) € G be an element which forces the following:

1. o is a name of a Pj-generic Prikry sequence.

2. (o(n): k <n < w) is disjoint from (p,: k <n < w) (we use the canonical

name of the generic set to express (p,: k < n < w)).
3. For every k < i <w, 0(i) € Asps.

For notational simplicity, let us assume that r = ().
For every ¢ < w, define a partial function f; from some subset of T to @, as

follows: Givent € T,

filt) =q <= A T(t)) >* (t,T) st (£, Ti(t) Fo(i) =g  (1.1)

~

where T, = {s € T:t < sors < t}. We note that f;(t) is well defined,
since (¢,T}) can’t have two direct extensions which force different values for
o(i) (because any two such direct extensions are compatible). We proceed with

several lemmas:

Lemma 1.2.2. The following properties hold:

1. Assume that m <m’ and m' > k. Then dom(f) C dom(fm).

15



2. For every t € T the set {m < w: t € dom(fn,)} is finite.

3. Assume that s = (fo(t),..., fm(t)), m >k and Ih(t) > k. Then s,t are

<-incompatible.

Proof. 1. Take t € dom(f,, ). Then for some T, (t) as in equation
t, T (1)) I+ o(m!) = m There exists a unique s € [Q]~ such that
fm (t) € Ag. On the other hand, since m’ > k, fi (t) € Agpms. Therefore,

(t, T (1)) I o | M/ = 5. In particular, (£, Ty () IF o (1) = s(m).

2. Assume the contrary. Then, from property 1, ¢ € dom(f,,) for every
m < w. Take H C P generic over V, such that (¢,7;) € H. Then the
Prikry sequence (o) g belongs to V, since o(m) = f,,(t) for every m < w,

a contradiction.

3. This follows since the weakest condition forces that (o (n): k <n < w) is
disjoint from the Prikry sequence derived from the canonical name of the

generic set.
O

Lemma 1.2.3. There exists a (Fy:t € [Q]~“)-tree T* C T, such that, for
every m < w there exists n < w, for which Lev,(T*) C dom (f), and, if n # 0,
Lev,—1 (T*) N dom (f,) = 0. Moreover, given t € Lev,, (T™*), (t,T7) IF o (1h) =

Fn (D).

Proof. First, fix some ¢ < w. By applying lemma there exists a (Fy: t €
[Q]=“)-tree, T; C T, with the following property: For every n < w, Lev, (T}) is
entirely contained in dom(f;), or disjoint from dom(f;). Since all the trees T;
for i < w have the same trunk, 7" = Ty is a (Fy: t € [Q]=*)-tree.

Now, given m < w, there exists 7ZL<: w, such that Lev,, (T},) C dom (f,,),
since ((),Ty,) has an extension which decides g(m). Take the first such n.
Thus, Lev, (T*) C dom (f,,). If n # 0, then Lev,_1 (T},) N dom (f,) = 0;
Thus, Lev,_1 (T*) Ndom (f,,) = 0.

Given m and n as above, and t € Lev,, (T*), shrink T™* above ¢, such that
every extension belongs to T, (t) (defined in equation . This ensures that

e —

<t7Tt*> H_g(m) :fm(t)' O]
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For every i < w, let n; < w be the first level of T* contained in dom (f;). We
note that (n;: i < w) is unbounded, and, from the index k, weakly increasing
(this follows from lemma . Thus, there are unboundedly many i’s such
that n; < n41.

For every i < w such that n; < m;11, and min{i,n;} > k, let us shrink
Levy,,, (T*). Fix some t € Lev,,,,, 1 (T"*). Then t € dom (f;) (since nj;1 —1>
n;). Denote s = (fo(t),..., fi(t)). Since min{n;,i} > k, s, t are <-incompatible,
and thus U, # Uy (this follows from property 3 in lemma ‘

We note that Succr-(t) C dom (fi11). Let ff;: Succr-(t) — Q be defined

as follows:

Vq € Sucer«(t)  fi1(q) = fir1 ()

Extend f | arbitrarily to the domain () = &, and let us consider the ultrafilter
(fi*+1)* U;. Then Uy # ( ;"H)* U,: Else, Uy <gpk U, and by normality, U, = Uy,
a contradiction. Thus, there are sets B; € U, C; € U, such that f; " B,NCy =
0.

Let Z, = {t € Levy,,, 1(T"): s = (fo(t),..., fi(t))}. We define a set E; €
Us, and for every t € Z;, an ordinal §;, such that the following property holds:
For every a € E; with a > §;, a € C;. Such a set F; exists: If |Z5| < &, simply
take Es = () Ct, and §; = 0. Else, assume that Z, = {t,: a < k}. For every

teZ,
a < K, choose d;, = o, and take E, = A Cy_ (note that §; depends only on t).

Now, we shrink 7™ above every t a6<KZs twice. First, shrink 7 such that
Succr«(t) € By. Then, shrink T such that for every t' € Lev,,  (T*) with
t' > t, fir1(t') > 6;: This is possible, since otherwise, by k-completeness, (¢, T;)
would have had a direct extension which decides the value g(iJrl), contradicting

the minimality of n;1.

Let us describe a dense set in Pﬁ:

Claim 1.2.4. The set D = {(s,5) € Pg: mc(s) ¢ fy, s, T"} is dense in Py.

Proof. Let (s,S) € Py. Assume that lh(s) = ¢ + 1 for some i < w, such that
ni+1 > n; and ny, ¢ are above k (else, extend (s, S)). Take ¢’ € Succg(s) N Es.

Denote s’ = s7(q').
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Now, assume, for contradiction, that for some ¢’ € T*, ¢’ = f;11(t'). By
extending or shrinking the sequence ', we can assume that t’ € Lev,,, (T%).
There exists ¢ € Levy,,, 17", such that ¢ > t. In particular, mc(t') € B;.
Therefore, ¢ = fiy1(t') ¢ Cy;. On the other hand, ¢ > §; and ¢’ € Ej, so
q € C;. A contradiction. O

Now, take a generic H such that ({),T7*) € H. Assume that (¢}: i < w) =
(0)m. Then, for every m < w, ¢, € fir (T*). Therefore, (¢(,...,q,,,S) ¢ D, for
every (Fy': t € [Q]<w>—tree S with trunk (g, ...,q,,). A contradiction, since D

is dense in Pﬁ. O

1.2.2 Trees With Arbitrary Measures

Motivated by theorem [1.2.1] it’s reasonable to ask whether a similar result
exists under more general settings. It turns out that the situation is much more
involved without the normality of the ultrafilters. Our goal will be to prove the

following theorem:

Theorem 1.2.5. It’s consistent, from k¥ -supercompactness of x, that for every
separative, k-distributive notion of forcing Q with |Q| = k, there exists a choice
of pairwise distinct ultrafilters F* = (Fy: t € [Q]™), such that Pg. has the
following property: For every pair of Prikry sequences for Pg., (pn:n < w),

<qn: n<w>;
(Gn:n<w) eV[pn:n<w)] < Dp:n<w)=(gn:n<w)

The proof of theorem [1.2.5| will be presented in two steps: First, we assume
that {(gn: n < w) € V [(pn: n < w)], and show that a certain connection between
the ultrafilters (F;: ¢ € [Q]<) is induced (theorem . Then, we prove that
the existence of a sequence of measures (F;*: ¢t € [Q]~*) without this connection
is consistent from xT-supercompactness of x (theorem . The first step is

presented in this section; The second step will be presented in the next section.
Definition 1.2.6. Let t € [Q], and n < w such that Ih(t) < n. Denote

n' =n—Ih(t). Define an ultrafilter Uy (t) as follows: A € U,(t) if and only if —

{(meQ:{re@: . . {vyeQ:t"(n,....vp) €AY EF .- YEF -, }EF

.....

U, (t) is a non-trivial k-complete ultrafilter on a set of cardinality k —
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{t7v:ve|Q/met)"}
Our goal, in this section, will be to prove the following theorem:

Theorem 1.2.7. Let (p,: n < w), (gn: n < w) be two different Prikry sequences

for Pg., such that (gn: n < w) € V[(pp: n <w)]. Assume:

1. m: Q — k is a function such that, for everyt € [Q]<w,
[ [ Q/me(t)]p, =k
2. The ultrafilters (F;"": t € [Q]™*) are pairwise distinct, where —
Fpor ={X Cr:n X € Fy}

Then there are <-incompatible sequences s,t € [Q]~“, n > Ih(t) and functions

fig: UUL(t) — Q, such that —
FeUn(t) = g Un(0)-lim{F;— y: q >q mc(s))
and both f U, (t) , g«:Upn(t) are non-trivial ultrafilters.

Proof. First, we note that there exists a partition (A,: s € [Q]=“) of Q, such
that A, € F: Indeed, fix a disjoint partition (A7°": s € [Q]<*) such that for
every s € [Q]<%, A" € F™°" and take A, = 7 ATO".

We start with the same arguments applied in theorem Assume that
(Pn:n < w), (gn: n <w) are two different Prikry sequences, such that (g, : n <
w) € V[(pn: n < w)]. Apply lemmas and [1.1.9)to find k < w such that for
every i > k, qiv1 € Ago,....q0)» Pit1 € Appo,..pp)s and {pp: b <n <w} {gn: k <
n < w} are disjoint. Denote by G the generic set over V' which corresponds to
(pn:n < w). Let o be a P-name for the sequence (gn:n <w). Let (r,T) € G

be an element which forces the following:

1. o is a name of a P-generic Prikry sequence.

2. (o(n): k <n <w) is disjoint from (p,: k <n < w) (we use the canonical

name of the generic set to express (p,: k < n < w)).

3. For every k < i <w, 0(i) € Ay}
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For notational simplicity, let us assume that r = ().
For every i < w, define a partial function f;, from some subset of T to @,

just as in the proof of theorem Givent e T,

fit) =q <= I, Ti(t) >* t,T) st. &, T;(t)) IFo(i) =g (1.2)

~

Lemma holds here as well. Now, let us shrink T to a (Fj: t € [Q]~)-tree,

T*, as follows:

Lemma 1.2.8. There exists a (Fy:t € [Q]~“)-tree, T* C T, and strictly
increasing sequences (n;: i < w), (m;: i < w), such that -

1. Lev,,(T*) C dom(fm,), and for every t € Lev,,(T*), (t,T}) Ik o(h;) =

P

fmi (1)
2. Levy,,(T*) and dom(fm,+1) are disjoint sets.
3. k < mg,ng.

Proof. First, fix some ¢ < w. By applying lemma there exists a (Fy: t €
[Q]<“>—tree, T; C T, with the following property: For every n < w, Lev,,(T}) is
entirely contained in dom(f;), or disjoint to dom(f;). Since all the trees T; for
i <w have the same trunk, 7" = (Tjisa (Fy: t € [Q]=%)-tree.

Assume that (n;: j < i) Werle<ﬁeﬁned, and let us define n;. Take some
extension (t, T;) of ({),T*) such that ¢ € dom(f;) (such an extension exists, by
extending the given condition to one which decides the value of g(i)) Assume
that 1h(t) > sup{n;: j < i} (Else - extend it). Set n; = lh(t).

For every i < w and t € Lev,, (T™*), let m; < w be the maximal value of m
such that f,,(t) exists (such maximal value exists, by part 2 of lemma .
By applying lemma [1.1.5] again, we can assume that m; is constant on every
level of T* (else, shrink 7). Let m; be the constant value on level n;. Then
the sequence (m;: i < w) is weakly-increasing, and for every i < w, m; > i.
By passing to a subsequence of (n;: i < w), let us assume that (m;: i < w)
is strictly increasing, and ng,mg > k. We note that Lev,, (T*) C dom(f,).
Moreover, by maximality of m;, for every ¢t € Lev,, (T*), t ¢ dom(fm,+1)-

Now, for every i < w and t € Lev,,(T*), shrink T above ¢ such that
{t’! e T*: t' > t} C T;(t), where T;(t) is as in equation It follows that
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(t,T7) IF o(m;) = fm, (t). O
For every s € [Q]~“, with 1h(s) = m; + 1 for some i < w, define —

Zs ={t € Levp,(T"): s = (fo(t), -, fm: (1))}

Inductively, for every i < w, let us shrink 7™ above Lev,,(T*). Fix such
i and t € Levy,(T*). Assume that s = (fo(t),..., fm,(t)). Then s,t are <-
incompatible (they at least differ in the coordinate k, since ng, mg > k).

We construct a set B”(t) € Up,,,

after shrinking, we have {t' € Lev,,_,(T"): t' > t} € B"(t). The first step to

(t), and shrink T* above ¢, such that,

construct B”(t) will be the following observation: if —

(mer?)* Uni+2 (t) = (fmi+1)* Uni+2 (t)'hm<F;~<q> 14 >qQ mc(s))

(we assume that fp,, 42 and fp,,+1 were extended arbitrarily on elements of
UUp,,,(t) which don’t belong to T), then this proves theorem Indeed,
s,t are <-incompatible, and (fm,+2), Un, 5 (1), (fmi+1), Un,,.(t) are non-trivial
(otherwise, ¢t would have had a direct extension which decides the value of

o(m; +1). This is not possible, since t € Lev,,,(T™*)). Thus, we can assume, for

contradiction, that for every ¢, s as above,

(fm¢+2)* Uni+2 (t) # (fmi—&-l)* UnHz (t)—lim(Fs*A@) g >Q mc(s))
so there exists B(t) € Uy, ,,(t) such that —

X(t) = {g € Q/me(s): iy 12B(t) N A gy € Fie i} & (), Uy 8)

Denote B'(t) = B(t) \ f;bil_H”X(t).
Now, for every ¢ € Q/mc(s) and for every t € Z,, define a set Cs~ (4 (t)
as follows: If ¢ ¢ X(t), then we know that f/!  ,B(t) N Ag~(y ¢ F

mi s7{(q)"
Let Cs~(q)(t) € FI., be a set disjoint from f7, ,B(t). Otherwise, take
Co(g)(t) = Q/g-

Let us define a set Cy~(

@ € F:ﬁq)v and, for every t € Z,, an ordinal d,

(which depends only on t), such that for every a € Cy~ 4y with 7(a) > &, a €
Cs—(g)(t). Such a set exists: If |Z,| < &, simply take Cs~ gy = [ Cs~(g)(t),

teZ,
and 0; = 0. Else, assume that Z; = {t,: a < k}. For every a < k, choose

d:, = a. Fix ¢ € Q/mc(s). Since [ [Q/q]F:A

could be defined as follows:

- K, the required set Cs~
q
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Co~gy ={a € Q/q: YVa < 7(a), a € Co~ (g (ta)} € Fio

Now, we finally define the set B”(t) described above. Given t € Lev,, (T*)
and s = (fo(t),..., fm,(t)), we claim that there exists a set B"(t) € U,,,(t),
such that B”(t) C B'(t), and for every t' € B"(t), 7(fm;+2)(t') > 0: Indeed,
else, by k-completeness, there exists a direct extension of (¢,7*) which forces
that W(g(mi +2)) = a* for some o* < k; There exists a unique s’ such that
a* € A" m; +2 > k, so the above direct extension forces in particular that
a 'm; +2 = s, and therefore ¢t € dom(fym,+1). This is a contradiction, since
t € Lev,,(T*). Therefore, there exists B”(t) as described above. Shrink T™*
above t using B"(t) € Up,_,(1).

Now, let us describe a dense subset D of Pz.. The density of D is a contra-

diction, just as in the end of the proof of theorem [1.2.1

Claim 1.2.9. The set D = {(s,5) € P: mc(s) & f}}, T*} is dense in P.

(s)—1
Proof. Let (s,S) € P. Assume that lh(s) = m; + 1 for some i < w (else, extend
it). Take ¢ € Succs(s), and ¢’ € Succs (s7(q)) N Cs~ (gy. Denote s" = 57(q,q’).

Now, assume, for contradiction, that for some t' € T*, ¢ = fm,+2(t'). By
).
There exists ¢t € T*, 1h(t) = n;, such that ¢ > t. In particular, t' € B"(t).

extending or shrinking the sequence t', we can assume that t' € Lev,,,(

Therefore, 7(q’) > ¢, s0 ¢ € Cy~(g)(t). On the other hand, ¢’ = fn, 12(t') €

i 1oB(t). Therefore Cy~ gy (t) and f;, ,,B(t) are not disjoint, so ¢ € X(t).
But ¢ = frn,+1(t'),s0t' € f;lilﬂ”X(t). This is a contradiction to the definition
of B'(t). O

This finishes the proof of theorem [1.2. O

1.3 Extension Of The Kunen-Paris Construction

Our goal in this section will be to prove the following:

Theorem 1.3.1. The following is consistent from k™ -supercompactness of k:
For every separative, k-distributive forcing notion Q with |Q| = k, and for every
t e [Q]<w, there exists a k-complete ultrafilter F} extending the filter of dense

open subsets above mc(t), such that there are no connections of the form:
FUn(t) = g.Un(t) = lim(Fi ) q € Q/me(s)) (1.3)
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for any pair of non-empty, <-incompatible sequences s,t € [Q]<w, and for every
fr9: VUL = Q.

Assume GCH, and let k be a skT-supercompact cardinal. Assume that
j:V — M is an elementary embedding which witnesses the xT-supercompactness
of k, i, crit(j) = &, ® M C M and j(x) > k. Assume that this embedding

is derived from a fine, normal measure on P,.x*; Thus,

Lemma 1.3.2. The following properties hold:
LV E ()] =kt
2. sup j'kTT = j(kTT)
3. j(,€+3) — k3

This is a standard lemma; A detailed proof is presented, for example, in [I],
section 4.

We would like to build a model which carries, for every ¢t € [Q]“, an ele-
mentary embedding j;, which witnesses the xT-supercompactness of x. Then,
use the embedding j; to extend F; to a k-complete ultrafilter F}* (the exact
way in which this is done will be explained later). The main idea here is that
using different elementary embeddings should prevent dependence between the
ultrafilters (Fy: t € [Q]=“).

One possible way to construct many elementary embeddings, is to push
forward a well known construction of Kunen and Paris, which maximalizes
the number of normal measures on x: Using x'-supercompactness of k, we
will construct a model which carries a definable sequence of elementary em-
beddings (jo: a < k*T), each one witnesses the xk-supercompactness of x;
This could be done such that the derived normal measures, U, = {X C

K: Kk € jo(X)} are pairwise distinct, and, in a way, are “far” from each other.

Before we describe the construction, we fix a standard notation:

Notation. For a set S of ordinals, define —

Cohen (n+,S) ={f: k" xS —=2: fis a partial function, |f| <k}
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Define an iteration of length k + 1, (P,,Q : a < k+ 1,5 < k) with Easton
support (direct limits are taken in regular limit stages, inverse limits elsewhere).

For every inaccessible a < k, take Q to be a P,-name for the forcing:
~a

Cohen(a™,a™) = {f: at x att — 2: f is a partial function, |f| < a™}

For every other value of «, let ) name the trivial forcing. Denote for conve-
nience P = Py4. o

Let G be P,-generic over V, and g be Cohen(k™, k™ 1)-generic over V|[G]. We
will prove that the model V [G, g] has a definable x*+-sequence of elementary

embeddings, as described above:

Theorem 1.3.3. The model V |G, g] carries, for every a < 1, a definable
elementary embedding, jo: V — My, such that j, 2 j and M, C M,, and

the derived normal measures, Uy, = {X C k: K € jo(X)}, are pairwise distinct.

As it turns out, constructing the ultrafilters F;* from the embeddings j, will
not be enough to rule out . Thus, we will construct another sequence of ele-
mentary embeddings, (j;: t € [Q]~*), where, for every t € [Q]", j; is definable
in some intermediate model V' [G, g:] C V [G,g] (so, j;: will be an elementary
embedding with domain V' [G, g;] and not V' [G,g]). Then, we will define the
corresponding ultrafilters, F}*, each derived from j; in V' [G, ¢¢]. This method

will reduce the amount of Cohen functions which F}* depends on; This will be

necessary for our purposes.

In this section, we describe the constructions of the embeddings j, and
i, for a < kTt and t € [Q]"¥. This will be done in subsections and
m The embeddings (j,: o < £T1) will be applied to prove theorem
The embeddings (j;: t € [Q] ) will be applied to construct the ultrafilters

(Ff:t e [Q]™). In subsection we confirm that (1.3) cannot hold.

In subsections [1:3:2] we will use standard methods for extending ele-

mentary embeddings. We follow mainly Cummings’ handbook article [I].

Notation. We fiz some notations, which will be used throughout the entire

section:
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. Assume that Q € V|G, ¢g] is a non-trivial, s-distributive forcing notion,
with |@Q| = k. Since g is a generic set for a kT -distributive forcing notion,
we can assume that @ € V [G] (by identifying @ with an isomorphic order

on k).
. Denote, for every a < k™, the function g,: k¥ — 2, defined as follows:
Vo€ K ga(e) = g(a.a)

This is the a-th Cohen function which g adds (We identified the generic

set g with the function Ug: kT x kT — 2).

. Let N =Ult(V,U), where U = {X C k: k € j(X)}. Let i: V — N be the
corresponding elementary embedding. Then crit(i) = x and "N C N. We
note that (k+)" =k and (k)Y < kt+.

. Fix, in V[G, g], a subset X C s+ \ (k*+)" with |X| = &, and a bijection
¢: [Q]"Y — X. By identifying Q with x, we can actually assume that

¢,Q,X € V[G], since g is generic for a kT-closed forcing notion.

. Denote g \ X = g N (kT x (k71 \ X) x 2). This is the set of the Cohen

functions indexed by an element of k™ \ X, i.e., not of the form g, for

some t € [Q]<¥.

. For every t € [Q]*, we would like to extend g\ X to a generic set for
Cohen (kT,xT), using only one Cohen function, gs). This could be

done as follows: In V' [G], fix an isomorphism—
oy Cohen (T, {¢(t)}) — Cohen (kT, X)

For every t € [Q]<*, define a function g,: kT x KT+ — 2,

9= (g \ X) U (Uat" (go(1)))

We identify g; with the generic set for Cohen (kT,kTT), over V [G] it
defines. Clearly, V' [G,g:] C V [G, g].
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1.3.1 Extending N With a Generic Set For i(P)

Let us extend N with a generic set for i(P). i(P) is an Easton iteration of length
i(k) + 1. i(P)o = P, for every a < k (if o < & this holds because P, € V. If
a = k, this holds because a direct limit is taken at k).

Since N C V, G is P,-generic over N. We would like to extend N [G] to a

model of the form N [G, ¢, Hy, ha), for every a < 1. Here:
1. ¢ will be (Cohen(x+, k++))"-generic over N [G].
2. H, will be i(P){41,i(x))-generic over N [G, g'].
3. hq will be Cohen(i (k1) ,i(n**))N[G’g/’H“}—generic over N [G,¢', H,).

Remark 1.3.4. FEvery construction which will be done in this subsection could
be applied on V' [G, g¢] instead of V' [G, g]. So, in this subsection, we also extend
N [G] to a model of the form N [G,g', Hy, hy], for every t € [Q]~“. Here:

1. ¢’ will be the same (Cohen(x*,x+))"-generic over N [G].
2. H; will be i(P)[41,i(x))-generic over N [G, g'].
3. hy will be Cohen(i (k1) ,i(H++))N[G’g/’Ht]—generic over N [G, ¢, Hy].

Claim 1.3.5. Given X € V [G] such that | X| < k and X C N [G], it follows
that X € N [G]. In particular, V [G] E "N [G] C N [G].

Proof. First, let us show that it suffices to prove the claim for X a set of ordinals:
Given X C N |[G], define X’ = {rank(z): + € X}. Then X’ € N[G], and
let @ > sup(X’). In N[G], fix a cardinal p and a bijection ¢: e 5
Then define X” = {¢(x): z € X}. So X" is a set of ordinals, and therefore
X" € N[G]. Thus, X = ¢~ X" € N[G].

Now, let us prove the claim for a set of ordinals X. So X € V[G], and
|X| < k. Since P, is k-c.c., there exists a set of ordinals X’ € V such that
|X'] < kand X C X’. Since "N C N, X' € N. Assume that 4 is a P.-
name for X. For every a € X', let A, be an antichain, maximal among the
antichains contained in {p € P;: plF & € g} Then, for every o < &, |4a| < K,
so Ay € N. Tt follows that A = (A4: @ € X’) € N. Now, define in N [G]
the set {a € X': GN A(a) # 0}. We claim that this set is X (and, therefore,
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X € N[G)]). Clearly, {a € X': G A(a) # 0} C X. On the other hand, given
a € X, there exists p € G such that p IF & € o; Now, we note that the following

set is dense in P,—
D = {q: q extends some r € A,} U{q: g and p are incompatible}

So there exists ¢ € G N D, and since p € G, ¢ extends some element in A,.

Therefore, G N A, # 0. O

Claim 1.3.6. Let ¢ = {f N (I{+ X (/@++)N X 2) :f€g}. Theng C N[G].

Moreover, g’ is Cohen (k™ n**)N[G] -generic over N [G].

Proof. By the last claim, and since each f € ¢’ has size < k, we have ¢’ C
N [G]. We prove that ¢’ is Cohen (k*, x+*+)" % _generic over N [G]. Clearly ¢’
is downwards closed, and any f, f’ € ¢’ are compatible. Given a dense subset

D' € N [G] of Cohen (k™ I<;++)N[G], we can define in V [G] the set —
D= {f € Cohen (k*, k) : fN (/‘c+ X (/@**)N X 2) € D’}

It’s routine to verify that D € V [G] is dense in Cohen (k*, kT T). Take f € gND.
Then fN (Fﬁ x (k)N x 2) € N[G], and fN (,ﬁ x (k)N x 2) cgnD'. O

Claim 1.3.7. Given X € V [G,g] such that |X| < k and X C N|[G,¢], it
follows that X € N [G,¢']. In particular, V [G,g]F "N [G,¢'] C NIG,d].

Proof. We can assume that X is a set of ordinals. Then, X € V[G,g], and
|X| < k. Since Cohen(k™,xtT) is kT-closed, it follows that X € V[G]. As a
set of ordinals, X C N [G]. Therefore, X € N [G]. O

Remark 1.3.8. Similarly, V[G,¢'| E "N|[G,¢'] C N|[G,¢'], and, for every
t € [QI, VIG,g] E "N[G,¢] € N[G,¢] (we note that ¢’ C g, since
X SR ()Y,

In N[G,g'], consider the quotient forcing i(P);.)/G * g'. Denote it by
i(P)(s,i(r))- Our goal is to construct, for every a < k™, a i(P), ;(x))-generic
set over N [G, ¢'], Hy, which belongs to V' [G, g]. To do so, we need the following

standard lemma.:

Lemma 1.3.9. In N, let p be the first inaccessible cardinal above k. Then —
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1. N[G,g'TE “i(P)(x,i(x)) is p-closed”.
2. VG, g1 E “i(P)(xi(n)) is kT -closed”.

Proof. 1 is standard (see [I], section 7, for details). As for 2, it is known
that V[G,¢']| E "N|[G,¢'] C N[G,¢'] and V [G,¢'] E |u| = . Therefore,
VG, 9] E “il(P)(xi(n)) is £T-closed”. O

Lemma 1.3.10. In N [G, ¢], let Z be the set of mazximal antichains in i(P) (. i(x))-
Then V|G, ¢'| EZ| = kT.

Proof. In N [G, ¢'], |i(P)(x,i(x))| = i(k), and i(P) . i(x)) is i(k)-c.c., since i(x) is
Mahlo. Therefore, N [G,¢'] F |Z] < i(x)<"®) = i(x). Since V F |i(x)| = s,
V|G, ¢ E|i(k)| = T. Therefore, V [G,¢'| E |Z| < k™.

Now, V' [G,¢'] F |Z] = k*: Otherwise, since—

VG, ¢'1E “i(P)(s,i(x) is k1 closed ”

there would exist a condition p € i(P)(s,i(x)) such that {g € i(P)(.,ix)): ¢ < p}
intersects every element of Z, and thus a generic set for i(P)(m-(,{)), which

belongs to N [G, g']; This is not possible since i(P) 4 i(x)) is non-trivial. O

Now, we can construct a generic set for i(P). (x)) over N [G,g'], which

belongs to V' [G, g]. This is done in the next lemma.

Lemma 1.3.11. There exists an injection A: o<k’ i(P)(r,i(r)), A €V I[G,9'],
such that, for every a < k™1, the following set, defined in V [G, g],

Ho = {p €i(P)(r.i(r)): 38 < KT D <i(P) ity Alda [ B)}

is generic for i(P)(..i(x)) over N [G,g'] (actually, H, belongs to V' [G,g" U ga]).

Proof. Work In V [G,¢']. Enumerate Z = {Z,: a < T}, where Z is as in
the last lemma. We construct a binary tree A of height k¥, of conditions from
i(P)(k,i(x))- Each branch in A will be an increasing sequence of such conditions.
We construct A as a function, A: PATI i(P) (,i(x))-

Construction of A: Take the root A({)) to be an arbitrary element of
i(P) (x,i(r))- Now, given o < k¥ and f € 2%, assume that A(f) = s, and let us
define A (f(0)),A(f(1)). Take two incompatible elements p,q € i(P)(xi(x))

above s. For p, there exists some p’ € Z, such that p,p’ are compatible. Let p”
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extend both of them. Similarly, choose ¢’ which extends s and some element
q € Zy. Set A(f(0)) =p", A(f~(1)) = ¢”. For limit levels of A, we use
rT-closeness of i(P)(x () Given a limit # < x* and f € 27, assume that
A(f | a) = sq, for every o < kT. There exists s € i(P)(x,i(x)) such that, for
every a < 3, s extends s,. Set A(f) = s.

A is injective: Suppose that hy # hy € 2<+" If for some x € dom(hs),
hi = ho | =, then A(hs) extends A(hy), so A(h1) # A(hg). Therefore, let us
assume that there exists © € dom(hy) Ndom(he) such that hy(x) # ha(x). Take
the first such . Then A(h; |2+ 1),A(he | 4+ 1) are incompatible. Thus,
A(hy) # A(hg) (Since A(h;) extends, or is equal to A (h; | © + 1)).

Construction of H,: Every maximal chain in the tree contains, for each
B < kT, an extension of some element of Zg. Given a < s*+, H, is the
downward closure of the branch which corresponds to g,, and thus intersects
every maximal antichain. H, is defined in V' [G, ¢’ U g,] from A and g, and
clearly is a generic set for i(P)(, i(x)) over N [G,g'].

We note that different Cohen functions g, g/, induce different generic sets,
H,, H,: This holds, since the first splitting point between two branches con-

tains two incompatible elements. O

Remark 1.3.12. Over V |G, ¢'], ga is reconstructible from H, (this is trivial if
a < (H++)N). More formally, fix o < kTT. then g, can be defined by a formula

with parameters A and H,.

Proof. Fix a < kTF. Assume that 8 < xT, and let us compute g,(3). Assume
that g, (8") was computed for every 5/ < 3. Denote p = A(go | ). Let
po=A(ga [ 87(0)),p1 = A(ga [ B7(1)).

Exactly one of pg, p1 belongs to H,; Assume without loss of generality that

po € H,. Since A is injective, there exists a unique h €#+1 2 such that A(h) =
bo = A(ga I (5 + 1)) Thus, ga(ﬁ) = h(ﬂ) O

Lemma 1.3.13. For every a < k*F,i: V — N can be extended to an elemen-
tary embedding i, : V |G] — N [G, ¢, H,]. Moreover, for everyx € N [G,g’, Hy|
there exists f: & — V[G], f € V[G], such that x = i (f)(K).

Proof. We note that "G C G*g'* H,, for every a < s: Indeed, for every p € G,

there exists @ < k such that for every 8 € [a, k), p(8) = 0. Therefore, for
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every 8 € [a,i(k)), i(p)(8) = 0. Moreover, for every 8 < «, i(p)(8) = p(8). So
i(p) € Gxg * H,.

Thus ¢: V — N may be extended to an elementary embedding i,: V [G] —
N|[G,q',H,). Since H, € V [G,g' U g4], i is definable in V' [G, ¢’ U g4].

Now, given € N [G,¢', H,], assume that o is a i(Py)-name that is inter-

preted through G * ¢’ *x H, as z: (0 = x. Then there exists F': k = V

N) Grg'+He
such that i(F) (k) = 0. We can assume that for every a < s, F(«) is a P;-name.
In V[G], define F': k — V [G], by setting F'(a) = (F(a)) for every o < k.

Then, by elementarity, i(F')(x) = (i(F)(n))G*g,*Ha = z. O

Remark 1.3.14. For the construction of N [G,g', Hy], take Hy = Hyy, and

it = ig(t).-
We turn to defining fy, the Cohen (i(s ™), i(x*+)) NG9 Hel

N |G, ¢, H,), for every a < k.

-generic set over

Lemma 1.3.15. In V [G,g|, define, for every a < k™7,
ha = {4 € (Cohen (i(s+), i(s ) V¥ 1] g € Uil g}

Then he is Cohen (i(/{“),i(/ﬁ“""))N[G’gl’H“]-genem’c over N [G,g', H,). More-
over, there exists an elementary embedding definable in V' [G, g], which extends

io (and therefore extends i),
it:VIG,g] > NG, ¢, Hy, hal
and if Uy = {X Ck: k € i (X)}, then N[G,¢',Ha, ho] = U(V [G,g],U,).

Proof. Clearly, the elements of h,, are pairwise compatible, and h,, is downwards
closed. Therefore, it suffices to prove that h,, intersects any set D € N [G, ¢', H,|
which is dense and open in Cohen (i(x™), i(/i++))N[G’gl’Ha]. Given such D, there
exists F': kK — V [G] such that D =i, (F)(x). Assume without loss of generality
that F'(3) is dense and open subset of Cohen (k*, x™T) for every 8 < k. Define,
in VI[G],

D' = [ F(8)

B<k
D’ is dense and open in Cohen(k™, k™). Take p € D' Ng. So in(p) €
ia(F) (k). Therefore, iq(p) € illg N D. This shows that h, is indeed generic
over N [G,¢', H,).

30



Now, we note that i g C hg, by the definition of h,. Therefore, there exists
an elementary embedding i%: V[G,g] — NG, ¢, Hy, ho] which extends i,.
Since h, € V [G, g], i is definable in V' [G, g].

N|[G,q¢',Hy, ho) = Ult (V[G,g],U,) since for every x € N [G, g, Hy, ho)
there exists f: kK = V [G,g], f € V|G, g], such that x = i%,(f)(x). This is done
exactly as in lemma O

The ultrafilters (U,: o < x7T) are destined to be the normal ultrafilters
derived from the extended embeddings j%. The following proposition states

that there are k™ pairwise distinct ultrafilters among them:

Proposition 1.3.16. Assume that o # B are in the interval [(K++)N ,/{H’).

Then Uy # Ug.

Proof. Assume the contrary. Then if; (G) = if;,(G), so Gxg'xHqo = G*g'+Hg.
Thus, H, = Hp (Indeed, assume that ¢ € H,, and ¢ is an i(P),41-name for g,
and p € G * ¢’ forces that g belongs to i(P)(,i(k))- f:[‘hen (p,q) € Gxg *xH, =
G * ¢’ « Hg, so the intereretation of ¢ via G * ¢’ belongs to Hg). Consider
VIG,g' Ugs]. Since H, € V[G,d U;a], it follows that Hg € V [G,¢' U ga].
Thus, by remark gs € V[G,¢' Ugy]. This is a contradiction, since
a# B> (kY. O

Finally, let us define h; for every t € [Q]<w. Note that hg;) and h; are not

defined in the same way.
Lemma 1.3.17. Assume that t € [Q]~“. In V [G,g:], define -
he = {a € (Cohen(i(t), ()M g € Uil g}

Then hy is Cohen (i(/i*),i(n**))N[G’g/’H"]—genem'c over N [G,¢', H]. Moreover,
there exists an elementary embedding definable in V [G,g:], which extends i

(and therefore extends i),
sz 14 [Gagt] - N [G’gla Ht, ht]
and if Uy ={X Ck: k € i;(X)}, then N[G, g, H, hi] = UtV |G, g¢], Uy).

Proof. Just repeat the proof of lemma[1.3.15 O
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Remark 1.3.18. Uy = Uy, since the subsets of k are the same in' V' [G, g] , V' [G, g4
and V'[G], and i3, if both extend iyy).

1.3.2 Extending M With a Generic Set For j(P)

Let us extend M with a generic set for j(P). Clearly, for every oo < &, j(P)y =
P,. Indeed, if a < &, then j(P), = j(Py) = P,. If a = &, then it is inaccessible
in M, so a direct limit is taken at x, and thus j(P), = P,.

+

Claim 1.3.19. G is j(P), generic over M, and V[G] E " M|[G] C M [G].
Moreover, g is Cohen (k7 , H++)M[G] -generic over M [G], and V' [G, g] E KM G, g]

N

M (G, g]. Similarly, for everyt € [Q]~, g, is Cohen (k™ I€++)M[G] -generic over

MIG), and V [G,g:) F " MG, ] C M[G,gt).

Proof. Every dense subset of j(P), = P, which belongs to M, belongs to V as
well, so G is generic over M. V [G] F =" M [G] C M [G] holds, since =" M C M,
and j(P)y is k-c.c.; Just follow the proof of claim Therefore g C M [G].
Now, since (k++) = x*+, g is (Cohen(x*,r*+))M
Finally, V [G,g] E * M[G,g] € M[G,g] follows similarly to claim since

Cohen(k™, kTH)MICl is x++ —c.c., and M [G] is closed under kT -sequences. [J

-generic over M [G].

In M [G, g], consider the quotient forcing j(P);(.)/G * g. Similarly, in M [G, gq],
consider the quotient forcing j(P);(.)/G * gt, for every t € [Q]=“. We repeat

(briefly) the same arguments as before:

Lemma 1.3.20. 1. V[G,g]E %(P);(x)/G * g is T -directed-closed”.
2. For everyt € [Q]~Y, VG, g/ F “G(P)j(r)/G * g¢ is kT -directed-closed”.

Proof. We prove only 1, since 2 is completely analogous. In M, let p be the
first inaccessible cardinal above k. Every forcing @ , with 8 > k, is p-directed-
closed. Therefore, M [G, g] F “j(P);()/G * g is ulﬁrected—closed” (see [I], sec-
tion 7, for details). It is known that V[G,g] F * M[G,g] € MG, g], and
V[G,g] E |u| = TF. Therefore, V' [G, g] E “j(P);(+)/G * g is kT T-closed”. [

Lemma 1.3.21. In M [G, g], let Z be the set of mazimal antichains in j(P);(.)/G*
g. Then V [G,g| E |Z| < xTF. Similarly, if Z; is the set of mazimal antichains
i §(P)j) /G * g, then V (G, ge) E | Z] < kTT.

32



Proof. In M [G, g], 17(P);x)/G * 9| = j(k), and j(P))/G * g is j(k)-c.c., since
j(k) is Mahlo. Therefore, M [G, g] F |Z| < j(k)<I") = j(k). Now, V E |j(k)| =
kTT, and so V [G, g] E |j(k)| = k*T. Therefore, V [G,g| E |Z| < kTT. O

Lemma 1.3.22. There exist, for every o < k™1, a J(P)jr)/G * g-generic set
over M [G,g], H:,
and ko: N[G,¢',Hy] = M [G, g, HZ], such that jo, = kq ©in. The embeddings
are definable in V [G,g]. Moreover, * M |G, g, H%] C M [G, g, H?].

and two elementary embeddings, jo: V [G] = MG, g, H}]

MG, g, Hj]

]

VG| —= N[G, g, Hy)

Proof. Let k: N — M be the natural embedding, defined as follows:

Then crit(k) = (k++)": This follows because k(k) = &, and k((k*)") =

M
(kGo)t) " = =,
First, let us extend k: N — M to an elementary embedding k*: N [G, ¢'] —

M [G, g]. Let us show that k"G x ¢’ C G*g. Given ¢ € G x ¢, k() has length
N[G]

k+1. k fixes elements of G; As for elements of g’: Each p € Cohen (k*, 57 T)
has cardinality < &, so it’s domain is bounded in £* X (K++)N. So k(p) = p.
Therefore, k acts as identity on G x ¢/, and thus k: N — M can be extended to
k*: N|G,¢'] - MG, g].

Now, let us construct the generic set H. H, has cardinality |i(k)| = (m*)v.
Let us consider k*"H,. For every p' € H,, p'is a condition in i(P);(.)/G * ¢',
so, by elementarity, £*(p) is a condition in j(P);(.)/G * g.

In VI[G,g], ¥"Hy, € * M, so k*"H, € M[G,g]. By k™" -directness of
J(P)j(x)/G * g, there exists a condition p, € j(P);(x)/G * g which extends every
element in k*"H,. We note that V' [G,g] thinks that j(P);(.)/G *g is £T7-
closed, and has at most k™ antichains (which all lie in M [G,g]), so we can
find a generic H}, for j(P);)/G * g over M [G, g], which belongs to V' [G,g],
such that p, € H},.
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Now, since j”G C G % g x HY (this holds because a direct limit is taken at
k), we can extend j to an elementary embedding j,: V [G] — M [G, g, H}].

As for k*, we prove that—
E"Gxqg *H, CGxgx* H

Indeed, assume that p € G, s € ¢’ and ¢ € H,. Then k* (57 (s)7q) =
P (s)Tk*(q); Now, ¢ € H,, so p, extends k*(q). Therefore, k*(q) € HE.
So p(s)"k*(§) € G*gx* HY, as desired. Therefore, we can extend k* to an
embedding k,: N [G,¢',H,] = M [G, g, H].

Now, since j = k o4, we have, for every P,-name o, and every a < s,

b (50 ((2),)) =5 (G @)y ) = (G(2) o) =
in((2),)

Lastly, let us claim that * M [G, g, H] € M [G, g, H*]. Assume that X €
V|G, g] is a set of ordinals of cardinality ¥, and X C M [G, g, H]. In partic-
ular, X C M [G, g], and thus X € M [G, g]. O

Remark 1.3.23. For every t € [Q]~, the same proof yields a J(P) i)/ G * g¢-
generic set over M [G, g, Hf, which belongs to V' [G, g¢]. Also, two elementary
embeddings, ji: V[G] — M |G, g, Hf] and ki: N|G,¢', H]| — M |G, gi, H],
such that j; = ki o i;. The embeddings are definable in V [G,g:]. Moreover,
" MG, gi, H;) € M (G, g1, H7).

The next step will be to find a generic set for Cohen (f<a+,fi++)M[G’g’H‘*‘]
over M [G,g,HX]. We use a technique of Magidor. The proof of the following

theorem is basically given in [I], section 13:
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Theorem 1.3.24. (Magidor) There exists h, € V' [G, g] which is a generic set
for —

Cohen (j(kT), (k1)) MIG.g,He]

over M |G, g, H], for every a < k™. Moreover, j: V.— M can be extended to

an elementary embedding, definable in V |G, g],

Ja:VIG,gl = M|G,g,H}, hY]

a? [e3%

Claim 1.3.25. For every a < k™, the embedding—
ka: N[G,g', Ho]l = MG, g, Hy)]
can be extended to—

ky: N[G,¢ Ho hal = M[G,g,H}, Y]

a? [

*

* ko
Moreover, k% o1}, = j-.

Proof. Let us claim that kJh, C h: Indeed, assume that ¢ € h,. Since hg

’

is the downwards closure of i/g, ¢ C i,(p) for some p € g. Thus, k,(q) C
ka (ia(p)) = ja(p) € hZ So ka(q) € hZ O

Claim 1.3.26. V [G,g|E * MG, g, H:, hi) C M [G, g, H:, hy).

a?''a ot o

Proof. As usual, it’s enough to consider only sets of ordinals. Assume that X

is a set of ordinals, X C M [G,g,H: h%], |X| < k7 and X € V[G,g]. In

particular, since X is a set of ordinals, X C M [G, g] (Actually, X C M, but we
need less than that). Therefore, X € M [G, g]. O

This finishes the proof of theorem [1.3.3t For every a € [(/{**)N,/ﬁ*),
there exists a definable embedding j%: V [G,g] = M, = M |G, g, H:, h%], such

a? (03

that crit(j) = K, Kt M, C M,, and the derived normal measures, U, = {X C

K: K € jo(X)}, are pairwise distinct.
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Now, let us extend the embeddings j; for ¢t € [Q}<w. Magidor’s method yields a
generic set h¥ € V [G, g¢] for Cohen (j(r"), j ()M 97 over M (G, g,, H});
Just repeat the proof of theorem[1.3.24] We can extend j;: V [G] — M [G, g, H;],
ki: N[G,¢',H] — M |G, g1, H] to embeddings j; : V [G, g:] = M [G, g+, H}, h],
kr: N|[G,¢',Hy, ) = M [G, g, Hf, hi] definable in V' [G, ¢¢], and &k} o i} = j;.

MG, g, Hf , hi]

]

V[Ga gt] # N[Ga g/7Htaht}

1.3.3 Getting The Required Property

Work in V' [G, g], the model built in the last section. Recall our goal: Given a
separative, xk-distributive notion of forcing @ € V' [G, g] with cardinality &, we
describe a method to extend each F; to a x-complete ultrafilter, such that the

following situation is ruled out:

fUn(t) = guUn(t) — Hm(FJ- )t ¢ € Q/mc(s))

<

for any pair of non-empty, <-incompatible sequences s, t € [Q]~*, and for every

frg: UUL(E) — Q.
We assumed that Q € V[G,g], @ is a set of ordinals (by passing to an

isomorphic forcing notion). Therefore, by xT-closure of Cohen(x™, k1),

(@, <q) € VI[G]

Recall also the subset X C x++\ (k7)" and the bijection ¢: [Q]~* — X. We
assumed X, ¢ € V[G, g] as well. O

Proposition 1.3.27. There exists a sequence (Fy: t € [Q]~*) and a function

7: Q — K such that, for every t € [Q]~%,

1. F} is a k-complete ultrafilter which extends Fy.

2. [m [ Q/me(t)]ps = k.

3. X € Uy if and only if {p € Q/mc(t): m(p) € X} € Fy.
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4. Fr e VIG, gl

Proof. Fix a partition of @ to dense subsets, (D¢: < k) € V' [G], as promised
in 1emma Fix t € [Q]~*, and let us describe the construction of F}*. Work
in V[G,g:]. jI'F; belongs to M [G,g, H;,h}], by closure under xT-sequences.
Now, each D € j;'F} is a dense open subset of j;(Q), and by j(k)-distributivity,
(JuFy is a dense open set. Denote j;((D¢: & < K)) = (Dé: & < j(k)). Then
each Dg is dense in j;(Q). Take ¢; € D, N(jyF. Now, let Fy = {X C
Q/me(t): q¢ € ji(X)}.

Then, in V [G, g, F}* is a sk-complete ultrafilter extending F;. Let m: Q — k
be the function which maps every p € @) to the unique 3 such that p € Dg.

First, we note that F; € V[G,¢g¢. Thus, F; € V[G,g]. It remains an
ultrafilter in V' [G, g], since V' [G, ¢],V [G, g¢] have the same subsets of k.

Assume that X C Q, X € F,. Then ¢ € j;(X), since j;(X) € j; F;. So
F; C Fy. Now, recall that Ug(y) is the normal ultrafilter on x generated by j;.
Thus -

X e U¢(t) <~ K E]t(X) <~ jt(’ﬂ')(qt) Gjt(X) <~
a: € ji ({p € Q/me(t): m(p) € X}) = {p € Q/mc(t): m(p) € X} € Fy
Let us claim that |7 | Q/mc(t)]F: = k. We identify 7w with 7 | Q/mc(t). First,
assume that f € V'[G,g], f: @/mc(t) — k satisfies [f]p. <[m]p.. Then —
{p e @/me(t): fp) <m(p)} € F}

This holds in V' [G,g]; But we can assume that f € V' [G], so this holds in
V[G, g aswell. Thus,in V [G, ¢:], ¢ € 5. ({p € Q/mc(t): f(p) < m(p)}). There-

fore, ji(f)(qr) < je(m)(at) = K, so for some 8 < &,
pe € ji ({p € Q/mc(t): f(p) = B})

Thus, [f]F: = B < k. This shows that [W]F: < k. Now, if for some 8 < k,
[W]FZ = 3, then ¢; € j: ({p € Q/mc(t): m(p) = B}); This is a contradiction since
Je(m)(qe) = & > B. O

Now, let us demonstrate how independent the ultrafilters F}* are from each

other.
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Proposition 1.3.28. Assume that s,t € [Q]<w are <-incompatible and n >
Ih(t). Then F¥ %ri Un(t).

Proof. Assume for contradiction that F* <g U,(t). Define I C kT,
I=(k"T\X)U{g(r): r € [Q" and r,t are 1> -compatible }

Denote g [ I = gN (kT x I x 2). First, note that U,(t) € V[G,g | I]: This
holds, since, for every r € [Q]* which is <-compatible with ¢, F* € V' [G, g | ]
(because F' € V[G,g,] CV [G,g | I]).

Now, denote o = ¢(s). Since U, < FYF, Uy <pkx U,(t). There exists
a Rudin-Keisler projection h € V [G, g] witnessing this; By xT-closure, h €
V[G,g | I]. Therefore, U, € V [G,g | I]. We will claim that this implies that
H, € V[G,g | I]. This is a contradiction, since, by Remark it follows
that g, € V [G, g | I], which cannot hold since « ¢ I.

Thus, it suffices to prove the following lemma:

Lemma 1.3.29. H, € V[G,g | I].

Proof. Denote Vo = V [G,g | I], Vi = V[G,g]. Then V; is a generic extension
of Vo with a generic set ¢g* = g\ (¢ | I) for Cohen (k*, X \ I) over V;. So
Vi=Vlg*].

Now, U, € V; is a normal, k-complete ultrafilter on x; Thus, there are a
definable model Ny ~ Ult (Vp, U,) and an elementary embedding iy : Vo — No.
By the same methods of the previous subsections, the downwards closure of
iv,"g* in iy, (Cohen (KT, X \ I)) is generic over Ny; Denote Ny = Ny [iv,” g%},
and extend i, to an elementary embedding i’i,u: Vi — Ni, such that z;} D)
iy,. Then, again, by the same methods of the previous subsections, if; is
the ultrapower embedding of the normal, x-complete ultrafilter {X C k: k €
i7;. (X)}; This ultrafilter is exactly U,, since for every X € Vi, X C &, it holds
that X € Vg (by x*-closure). Thus, if; = ij,.

Now, G* ¢ * Hy, =i (G). Thus, Gx ¢ * H, =iy, (G), so G g *x H, € V.
Thus, H, € V. O

O
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Remark 1.3.30. It was crucial, in the last proposition, that F; € V [G,g | I].
This might not hold if F} depends on more Cohen function of g. This is the

reason why we developed the embeddings j; and used them to extend F}.

Now, we can generalize proposition and give a stronger evidence for
the independence between the ultrafilters in (Fj: ¢t € [Q]*). The following
theorem, together with theorem finishes the proof of theorem [1.2.5

Theorem 1.3.31. Assume that s,t are <-incompatible. Then there are no

n > h(t) and functions f,g such that —
F.U(1) = . U(0)-lm( S ) 4 2 me(s))

Proof. First, let us deal with the case that g.U,(t) is trivial. This case is less
significant, since theorem promises that ¢.U,(t) is non-trivial; But the
majority of work for this case was already done: If ¢.U,(t) is trivial, then
for some g € Q/mc(s), f.U,(t) = Fro - So Fiy <rk U,(t), and this is
impossible by proposition

a°

We move forward to the general case. Recall that U, = Uy for every
r € [Q]T“. Tt would be simpler to work with the normal ultrafilters Us—(q)

instead F - (@

Lemma 1.3.32. By modifying f, we can assume, without loss of generality,

that f.Un(t) = g Un(t)-lim(Us~(g): @ Zq mc(s)).
Proof. Assume that f.Un(t) = .Uy (t)-lim(F} -, : ¢ 2@ me(s)). Then —
X € fuUu(t) <= {q€Q/me(s): X € X} € g.Un(t)
Therefore,
X € (mof),Unlt) <= {q€Q/me(s): X € Upie(gy € 9.Un ()
So —
(10 P)aUn(t) = g.Un (D) im(Us 4y ¢ > me(s))
O

So assume that f.U,(t) = g.Up(t)-lim(Us~ (g : ¢ =@ mc(s)), and g.Up(t) is

non-trivial. Denote —
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I=FM\X)U{o(r): 7 €[Q]" and r,t are > -compatible }

J={¢(s7(q)) : ¢ > me(s)}

Then I,J are disjoint, J C X \ I and |J| = k. Denote Vo = V[G,g | I],
Vi = VI[G,g], where g | T = gn (st xIx2). Then Vi = V;[g*], where
g*=gnN (kT x (X \I)x2) is generic for Cohen (k*, X \ I).

Note that for every t € ¢ =11, F € Vo, so Uy,(t) € V.

Denote U = f,.U,(t), W = ¢.U,(t). Then f,g can be identified with func-
tions € k", so f,g € V[G]. Thus, U W € V;. Moreover, W <gx U by the
discreteness of F:A< p
V [G], and thus to V;.

Now, let Ny = Ult(Vy, W), Ny = Ult(Vo, U). Let iw: Vo — Nw, ip: Vo —

) The Rudin-Keisler projection h: UU — UW belongs to

Ny be the corresponding elementary embeddings. Define k: Ny — Ny as

follows:

k (iw (H)([Tdlw)) = v (f)([Aly)

this is an elementary embedding, defined in Vj.

The downwards closure of ifj,¢* is generic for iy (Cohen (k, s+ \ I)) over
Nw (by the same methods of previous subsections). Denote N2, = Ny [i"g*]
(we identified if},g* with it’s downwards closure). Let i%,: V [G,g] — Ng,
be an elementary embedding which extends iy . Every element z € N2, is
of the form i}, (F)([Id]y,) for some F: k — V[G,g], F € V[G,g]. Thus,
N2, = UL(V [G, g],W).
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Similarly, define i?,: V' [G, g] — N, where NZ = Ny [if;g%] = Ult(V [G, g],U).

1]k

Note that for p < iw(q), where ¢ € ¢*, k(p) < iv(q), and iy(q) € if;g*.
Therefore, k"ifj,g* C if;g*. So we can extend k to k?: N&, — NZ. It can be
easily checked that, in Vi, k% o3, = i%.

We note that ([h}U)V1 = ([h]U)V° (here we identify the equivalence class and
the transitive collapse): Both are ordinals in V; (recall that we identified Q with
k), and are isomorphic, since for every f such that [f],, < [h], in Vi, there exists
f* € Vp such that, in Vi, [f*], = [f],- Thus, we identify [h];° = [h];} = [h],-
Similarly, ([Id]y,)"° = ([Id],y)"*. Thus, in Vi, k2([Id]y,) = [h],-

The following properties uniquely define k2:

1. k?: N%, — N is elementary.
2. k?oid, =i
3. B([Id)y) = A,

There exists another embedding which satisfies properties 1 — 3 above, which is

the ultrapower embedding of Ult(N3,, F), where —

F =3y (Us~(g): ¢ 2@ me(s))) (d]y)

(Recall that W is an ultrafilter on Q/mc(s), so [Id]y, € iw(Q), and the last

line makes sense). So k2 is the ultrapower embedding of F.

Lemma 1.3.33. Denote § =i, ((9a: o € J)) (i%,(¢) ((Id]y)). Then g € V.

Proof. Work in V. Let A, Z € V [G, ¢'] respectively be the binary tree and the

set of antichains from lemma |1.3.11} By Remark [1.3.12] for every a < k¥, g,
is reconstructible from A and H,. Note that Hy = io(G) | (k,i(k)), where i,

is the ultrapower embedding of U,,.
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Thus, for every ¢ € Q/mc(s), gg(s—(q)) is reconstructible from A, Z and
is—(gy(G). This is true in V' [G, g]. Recall that 1 is an ultrafilter on Q/mc(s).

By elementarity, in N3/, the function —

9=t (g2 @ € 1)) (& (9) (Ld]yy))

can be reconstructed from i3, (A4) and i% (i, (G)) = i3 (G).
But A,Z,G € V. Thus g can be reconstructed from iy (A), iw(Z) and
iy (G), which all belong to V. O

Now, let us finish the proof by deriving a contradiction. Recall, from the
beginning of the proof, the generic set g* for Cohen (s, X \ I) over V;. Recall
that J C X \ I. Define, in Vj, a dense set in Cohen (v, X \ I):

D = {p € Cohen (v*, X \ 1) : 3j € {0,1} I < x™ g (iw(§)) = j and V3 € T p(&, B) # j}

Let us prove that, indeed, D is dense in Cohen (xT, X \ I): Take a condition
p: kT x (X \I) — 2 with |p| < k. There exists £ < £t such that, for every

B e, (&B) ¢ dom(p). Denote j = g (iw(§)). Define:

p=pU{(§p,1-j):BeJ}

thenp e D, p O p.

Thus, D is dense in Cohen (k*, X \ I). Then g*ND # (). Take some element
r in the intersection, and let j € {0,1} and £ < x™ be the parameters promised
by r € D. Then for every 8 € J, g*(§,8) = 1 — j. Thus, for every g € J,
98(§) =1 —1J.

On the other hand, g (iw (£)) = j, so {g € Q/mc(s): go(s—(q)) (&) = j} € W.
Take ¢ in this set, and denote 8 = ¢ (s (g)). Then S € J, a contradiction. O

1.4 Concluding Remarks
Given pair of different generic Prikry sequences for Pp.,

(Gn:n <w),(pn:n <w)

we proved that—

(Gn:n <w) €V [{(pn: n <w)]
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implies some connection between the ultrafilters (Fy: t € [Q]~“); We are not

sure that this is the optimal connection.

Question 1.4.1. Does there exist any connection between the ultrafilters (Fy: t €

[Q]=), which promises that, for pair of disjoint Prikry sequences as above,
(gn:n <w) € Vpy:n <w)

As for the quotient forcing, by combining theorem and proposition
1.1.13} it follows that the quotient forcing Py, /H, described in the last section,

is not homogeneous:

Corollary 1.4.2. It’s consistent from k1 -supercompactness of k that for every
separative, k-distributive forcing notion Q with |Q| = k, there exists a choice of
measures ﬁ*, such that for every H C @Q generic over V', the quotient forcing

Pz, /H is not homogeneous.

Question 1.4.3. Is it consistent, from some large cardinal assumption, that
for every separative, k-distributive forcing notion Q with |Q| = k, there exists a
choice of measures F* such that for every H C Q generic over V, the quotient

forcing Pz, /H is homogeneous?

43



Chapter 2

Prikry Forcing With One Ultrafilter

2.1 Definitions and Basic Properties

Let k be a k-compact cardinal. Consider a separative, k-distributive forcing
notion (@, <g@), with |Q| = k. Let us assume that h: Q — & is some function

which satisfy —
Va<k, {geQ: hlq)=a}| <k

Remark 2.1.1. For example, assuming that Q C V., we may always take
h(q) = rank(q). Alternatively, identify Q with k and take h to be the identity

map.
Let F be the x-complete filter generated by the dense-open subsets of @ —
F={ECQ: DCE for some dense open subset D of Q}

By k-compactness of k, there is a k-complete ultrafilter F* extending F. Let
jre: V. — Ult(V, F*) be the elementary embedding of V in it’s ultrapower.
Assume that m: QQ — & satisfies [7] . = & (where [f]. is the equivalence class
of the function f: @ — V, under the natural equivalence relation derived from
F*). Let U <rg F* be the non-trivial, normal, xk-complete ultrafilter on &,

derived from the Rudin-Keisler projection 7, i.e. —
VXCkh, XeU < 7 1(X)eF*

In this section, we will develop a Prikry-type forcing Pp«, which depends on the

choice of F*, the function h and the Rudin-Keisler projection .

Definition 2.1.2. Let (Pp«, <, <*), consist of elements of the form (p1,...,pn, A),

where —
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1. peq
2. Ae F*
3. For every 1 <i<mn, mw(p;) > h(pi—1)

We say that (p1,...,pn,A) > {q1,...,qm, B), namely {(p1,...,pn, A) extends
<Q17"'7Q7naB>7 Zf and OTLZy Zf7

I.n>m
2.V1<i<m q;=p;
3. VYm<i<n p;eB
4. ACB

If n = m, we say that (p1,...,pn,A) is a Direct Extension of {q1,...,qm,B),
and denote it by (p1,...,Pn, A) >* {q1, ..., qm, B).

If Q = (k, €), h is the identity, and F* is some normal ultrafilter on &, then

Pr- is the standard Prikry forcing.
Remark 2.1.3. 1. {p € Q: w(p) < h(p)} € F*.

2. For every q € Q, {p € Q: n(p) > h(q)} € F*. In particular, Pp+ is

separative.

Proof. 1. Otherwise, we would have had [h]p. < K, so, for some a < &,

{g € Q: h(q) = a} € F*, and in particular, [{g € Q: h(q) = a}| = k.

2. given an element ¢ € Q, {a < k: a > h(q)} € U, and thus 7~ Ha <
kra>h(g)}={peQ:7m(p) >h(q)} € F".
O

We would like to prove some Prikry-type properties of Pp«. Given a generic
G C Pp-, we may define a corresponding w-sequence (p;: i < w) € V[G] of

elements of @, derived from —

U{p: 34 € F* (p, A) € G}
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By a simple density argument, the sequence (h(p;): i < w) € V' [G] is cofinal in
K, so in V [G], k changes it’s cofinality to w. Moreover, Pg« preserves cardinals:
For cardinals above x this easily follows from x* — c.c.. For x and below, this
will follow, by a standard argument, from the Prikry condition (Claim
below). Towards the proof of the Prikry condition, let us show that F* admits

some kind of diagonal intersection:
Lemma 2.1.4. Let A € F*, and assume that for everyp € A, A, € F*. Let -

EAA* Ay ={zeA: VYpeAhlp) <n(z) > xze€ A}
P

Then A* A, € F*.
peEA

Proof. For every v < k, let —

N 4  JpeQhlp) =y
B, = { hp)=v
Q else

By the x-completeness of F*, B, € F*. Now, we may easily verify that —

EA; A, D2{zeQ : Vy<ky<m(z)wzeB,}NA
P

So it suffices to prove that {z € @ : ¥y <k v < w(z) - = € By} € F*. We
note that by Los’s theorem, it suffices to prove the following property in the
ultrapower Ult(V, F*):

Vy <k [Idp- € j(B,)

Where j: V — Ult(V, F*) is the corresponding elementary embedding. In-
deed, this property trivially holds since B, € F™*. O]

Notation. For A C Q and n € w, denote by [A]" the set of all finite sequences
of the form (q1,...,qn) € A™, where —
1. Vi, ¢; € Q
2.V1<i<n, m(g) > h(gi-1)
Set [A]® = {()} (the empty sequence). Denote [A]~* = U [A]".
n<w
Remark 2.1.5. We can generalize our form of diagonal intersection for sets

indezed by finite sequences of elements of Q). Assume that for every a € HQ]}@’

there exists a set Az € F*. Let —
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H%’]; Az={ze Ay : Va=(a1,...,a,) € [Q]™" h(ay) < 7(z) =z € Az}
aclQl=~

Then A* Az e F*.
acfQl<~

Proof. For every p € A, denote S, ={d = (a1,...,a,) €S : a, =p}, and let—
H,= N A4z
aes,
Note that |S,| < &, since [{a € Q: h(a) < 7(p)}| < K, so there are < k options
for a,_1; For each one of them, there are < k options for a,_s, and so on.

Therefore, by k-completeness, H, € F*. Now, set —

H= eAc; H,y={zxcA: VYpeAh(p) <n(z)—x€H,}
P

Then H € F*,;and H C A* A;. O
aelQ=*

Recall that, given a measure F on x and 1 < n < w,
F'={ACkK": {omg <k:{aa<k: .. {ap<k:{ai,...,an)€A}eF...} eF} €F}

This is a k-complete ultrafilter on k™. F", where F' is an ultrafilter on @, is

defined similarly. The following property will be useful:

Lemma 2.1.6. For every n < w and Z € F*", there exists A € F* such that
[A]" C Z.

Proof. Z € F*" means that —

Ay ={r1€Q: {12 Q: .. {z, €Q: (x1,...,2y) € Z}y € F* ...} € ¥} € F*
We define sets Az recursively: Assume that A, ., was defined for k <n—1.
For every xx11 € Az, 20, €t —

A<w1,..‘$k,wk+1> = {$k+2: {xk+3 .. .{ZEn: <$1, . ,ZEn> S Z} e F*.. } € F*} cF*

For every @ € [Q]<“ such that Az has not been defined, take Az = Q € F*.

Now just take A = A* Az O
aelQ=*

We will use the following generalization of Rowbottom’s theorem:

Lemma 2.1.7. (Rowbottom’s theorem for F*)
Assume f: [Q]” — « is a partition of [Q]~*, for some oo < r. Then there

exists H € F* such that for every n € N, f is constant on [H]".
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Proof. 1t suffices to prove that for every n € N, for every partition f, there
exists H,, € F'* such that f is constant on [H,]" (and then set H = (| H,,).
neN
We prove this by induction on n. The case n = 1 follows from x-completeness.

For n + 1, given a partition f: HQ]}@’ — «, define, for every sequence d =

{ai,...,a,) € [Q]", a function fz: @ — «, as follows —
oy = J flaq) if w(q) > h(an)
fala) = { 0 otherwise

By the x-completeness of F*, for every @ € [Q]", there exist an ordinal vz € k
and a set Hz € F* such that f; gets the constant value vz on Hz. Now, apply
the induction hypothesis on the function @ — ~z: There is v < k and a large

set Z € F* such that for all @ € [Z]", vz = 7. Let —

H=7Zn A* H;
ac[A]™

We claim that f gets the constant value v on [H]" .
Indeed, Let @ = {(a1,...,Gn,ant1) € [[H]]"H. We note that, by the definition
of the diagonal intersection, a,+1 € Hq, ... q,)- Therefore:
f(C_I:) = f(al ..... an>(an+1) = Yas,..., an) =7

(the last equation follows from the fact that (a1, ...,a,) € [Z]"). O
The next lemma follows in a standard fashion:

Lemma 2.1.8. (The Prikry Condition) Let o be a statement in the forcing
language of Pp«. Let (p1,...,pn, B) € Pp+. Then there exists A € F*, AC B
such that (p1,...,pn, A) || o (i-e. {D1,...,pn,A)IF 0 or (p1,...,pn, A)IF —0).

Lemma 2.1.9. Assume (p,: n < w) is a Prikry sequence for Pp«, generated
from some generic G C Pp«. Let E € F*. Then there exists ng € w such that

for every n > ny, p, € E.

Proof. Let D = {(ag,...,an,A) € Pp» : A C E}. D is clearly dense in Pp~.

Therefore, there exists some ng < w and some A € F*, A C E, such that —

<p07"'7p7L07A> € G

Therefore, for every n > ng, p, € E. O

Remark 2.1.10. Assume that (p,: n < w) is a generic Prikry sequence for

P, with a corresponding generic set G over V.. Then V [G] =V [(pn: n < w)].
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Proof. Tt suffices to prove that G € V [(p,,: n < w)]. Let us argue that —
G={{poy.. sPn,A): n <w,A € F* and for every m > n,p,, € A}

The inclusion C is clear; Now, given (po,...,pn, A) such that for every m > n,
pm € A, it follows that (pg,...,pn, A) is compatible with every element of G,
and thus, belongs to G. O

We will use the following observation as well:

Remark 2.1.11. Suppose that (p,: n < w) is a Prikry sequence for Pr«. Then,

for every m < w, (p,: n > m) is a Prikry sequence for Pp« as well.

Proof. Denote t = (pg...,pm). Let G be the generic set corresponding to
(pn: n < w). Define —

G ={(Pm+1,--,Pn,A): m <n <w and for every k > n,p, € A}

We claim that G’ is Pgr«-generic over V. It suffices to prove that G intersects

every dense open set. Given D’ C Pp» dense and open, denote—

D = {t/\<QOa .. 'aQ’rL7A>: <QO7 e 7qnaA> S Dl and W(QO) > h'(p’rn)}

Then D is dense above (t,Q) € G. Thus, G contains an element of the
from t™{qo, ..., qn, A) where {qo,...,qn, A) € D’. In particular, (qo,...,qn) =
(Pmt1s -« Pntmst1). Also, for every k > n+m + 1, pr € A. Therefore,
(G0, qn, A e G'ND'. O

Lemma 2.1.12. Assume that F* is Rudin-Keisler equivalent to a normal ul-
trafilter on k. Then every generic extension of V', obtained by forcing with Pp«,

is a generic extension of V' obtained by forcing with the standard Prikry forcing.

Proof. Indeed, the function h: Q — & defines a x-complete, non-principal ul-
trafilter —
W=h,(F)={XCk: h™'X € F*}

Therefore W <ggx F*, and by minimality of F* in the Rudin-Keisler order,
W =gk F*, and h: Q — & is injective on a large set A € F*. We can assume
that W is normal (if not, take an injection f: K — k such that f.W is a normal

ultrafilter, and replace W with f,W and h with f o h for the rest of the proof).
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Let (p,: n < w) be a generic Prikry sequence for Pp«. By lemma [2.1.9
we can assume without loss of generality that p, € A for every n < w. Thus,
Vipn:n<w)]=VI[{h(pn): n <w)]. (h(pn): n < w) is an increasing sequence
(this is true from some index, and we may cut the initial segment). For every
C € W, there exists ng < w such that, for every n > ng, h(p,) € C (this
follows by lemma again). Therefore, by the Mathias criterion (see [2],
1.12), (h(pn): n < w) is a Prikry sequence for Py, the standard Prikry forcing
with the normal ultrafilter W. O

2.2 Prikry Sequences Inside Generic Extensions

Fix a measure F' on . A function f: k™ — & is called a projection of F™ onto

F, if it’s a Rudin-Keisler projection, i.e.,
XcF < f'XeF"

Given 1 < i < n, let p;: kK — k be the projection on the i-th coordinate:
pi(21,...2,) = ;. Clearly, every such a projection is a Rudin-Keisler projection

of F'™ onto F, since,
AeF — {r1€r:{azer: .. {zpn€riz; € A}eF...} €F

Definition 2.2.1. A projection f: k™ — k of F™ onto F is called non-trivial,

if for every 1 <i < n, {Z € k™: f(Z) # ps(Z)} € F".

Every projection f: k — k of F onto itself is trivial, i.e., {z € k: f(z) =
x} € F. Therefore, the last definition makes sense for n > 1.

Let Q, F*, Pr« be as in the last section.

Theorem 2.2.2. Assume (p, : n <w), (g, : n < w) are two Prikry sequences

for Pp«, with a finite intersection, such that —
(Gn :n<w) €V [(py i n<w)]
Then there exists n > 1 and a non-trivial projection of F*" onto F*.

Proof. By cutting a large enough initial segment, we may assume that the se-
quences (p, : n < w), (g, : n < w) are disjoint. In V| assume o is a Pp+-name

for (gn: n <w) € V[{pn: n < w)]. We will use the following lemma:
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Lemma 2.2.3. There are m,n € w, ¥ € [Q]~* and A € F*, which satisfy the
following property: For every 7 = {(v1,...v,) € [A]", there exists py € Q and
By € F*, such that -

1. (F,U,Bg) € Pp«, and (7,7, By) I+ o(m) = pg

~

2. For every Be F*, BC A, {py: ve[B]" } € F*

Proof. Assume otherwise. First, take (7, X) € Ppg-, which forces that o is a
generic Prikry sequence for Pp«, disjoint from (p, : n < w) (which could be
expressed as the sequence generated from the canonical name for the generic
set). In this proof, we work in Pp~ above the condition (7, X). For notational
simplicity, let us assume that (¥, X) = ((),Q) is the weakest condition. We
will build an increasing sequence (n;: i < w), and, for every ¢ < w, large sets
B; € F*, E; € F*, which satisfy the following property: For every v € [B;]",
there exists p;(7) € @ and a set B; (V) € F™*, such that:

o —

L (7, Bi(7)) I 0 (1) = pi(¥)

2 {pi(#) : Fe[B]" YNE; =0

We build those elements in the following way: On stage i, define a function

fi: [Q]°* — 2 as follows: For every 7 € [Q]~“,

fi(7) = 1 3pi(V) € Q,B;(V) € F*, s.t. (¥, B;(V)) IF g(z) = p;(V)

0 otherwise

Let H; € F* be homogeneous for f;. We use the following claim:

Claim. For every ng < w, there exists some n > ng, such that f; [[g,jm= 1.

Proof. Let 7 € [H;]". Take p;(¥) € Q such that for some /, H' C H;,

(7, H;) < (7, H') I+ 0(3) = pi(9)

~

Let n = 1h(?’) be the length of #/. Then f;(7') = 1. By the homogeneity of H;,
we get f; [[m,n= 1. O

Applying the claim, for every i, there exists some n; > sup{n;: j < i} such
that, for every 7 € [H;]™, there exists p;(7) € Q and a large set B;(¥) € F*
which satisfy (7, B;(¥)) IF o(i) = T(?) By our assumption, there are some

B; C H;, B; € F* such that —
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{pi(?) : Ve[B]™ } ¢ F*
So, we may assume that this set is disjoint from some E; € F*. This concludes

stage ¢ in the construction. Now, take —

B= B, E=NE

1<w <w

Let us argue that —
(0,BYIFVn<w3di>n, o) ¢ E (%)

(*) finishes the proof of the lemma, since it contradicts claim [2.1.9] To prove
(%), it suffices to show that the following sets are dense above ((}, B):

D,={p€Pp : pl-IFi>n, o(i)¢E}

Indeed, fix n < w. Assume (7, B') > ({), B). By extending 7 if necessary, there

exists some ¢ > n such that 7 € [B;]"". Therefore:

(7, B' N Bi(9)) I+ 0(3) = p,(7)

~

(as an extension of (7, B;(¥))). But p;(¥) ¢ E by our construction. So —
(7,B") <* (7,B'NBy(")) - 0(i) ¢ E
O

Now, fix n,m, A, 7 as in the lemma, and denote by f: [A]" — Q the function
U — py. We identify f with one of it’s arbitrary extensions to the domain Q.
We note that condition 2 of lemma [2.2.3] implies that n > 0. Let us argue that

f is a projection of F*™ onto F™*:
Claim 2.2.4. Y € F* < {V: f(V) €Y} e F*".

Proof. First, let us assume that forsomeY € F*, {7 e [Q]" : f(¥) ¢ Y} € F*".
Applying lemma let X € F* be chosen such that for every v € [X]",
f(7) ¢ Y. By intersecting, assume X C A. By condition 2 of lemma it
follows that Z = {f(¥) : 7 € [X]"} € F*, therefore ZNY # 0, a contradiction.

For the other direction, assume that {7: f(V) € Y} € F*". Take Z C A
such that f”[Z]" C Y. By condition 2 of lemma 2.2.3] {f(¥): 7 € [Z]"} € F*.
Therefore Y € F*. O

The non-triviality of f follows from the following claim:
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Claim 2.2.5. For everyi <n, {U e Q™: f(V)=v; } ¢ F*".

Proof. Assume otherwise. So {V € Q": f(¥) = v; } € F*". Therefore, by
Remark[2.1.6] there exists a set C € F* such that, for every 7 € [C]", f(¥) = v;.

Assume that —

CQ( A* Bg)ﬂA

ve[A] <
(else, intersect). Here, if By has not been defined, take By = Q. Let us claim

that —

D = {(7,7,8) € Pp-: Ia(7) > n and (7,7, 8) I o (1) = i}

is dense above (7,C'). Once we prove this, we are done: Just take G C Pp-
such that (7,C) € G. Choose (F,7,S) € D NG, where U = (vy,...,v), for
some k < w, k > n. So (*,7,5) Ik g(m) = 1;, contradicting the disjointness
of a and the Prikry sequence of G (recall that this disjointness was forced by
(7, X), where C C X. We assumed that X = Q; without this assumption, in
the definition of C', we should intersect with X).

Therefore, it suffices to prove the density of D above (7,C). Let (7,7, S) €

Pp+ extend (7, C), and assume that 1h(2) > n (else, extend it). Now, since —

<Fa 177 SN B(I/17...,un)> > <’F7 ViyeooyUn, B<V1,...,Vn>> IF U(m) = p(l/l,...ﬂ/n)

~

we get <7_’)7 17, S> <* <F, 7,SnN B(ul,...,un)> I+ J(m) = p(”h---#n) = 7. O

This shows that f: Q" — @ is, indeed, a non-trivial projection. Clearly
n # 1 (else, f was trivial). O

Lemma 2.2.6. Assume that F'* is Rudin-Keisler equivalent to a normal ultra-
filter on k. Then the assumptions of theorem [2.2.9 cannot hold. More precisely,
= (pn:n<w), 7= {(qn: n <w) are two Prikry sequences for P+, such that

(gn:n <w) €V [{pn: n <w)], then P, § have infinitely many common elements.
This lemma follows from theorem and from the following proposition:

Proposition 2.2.7. Let U be a normal ultrafilter on k, and 1 <n < w. Then

any projection f: k™ — k of U™ onto U 1is trivial.
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Proof. Assume the contrary. Let n < w be the first such that U™ is projected
on U via a non-trivial projection f: k™ — k. n > 1 since any projection of U
onto itself is trivial. We prove that {Z# € k™: f(Z) = p,(Z)} € U™. This follows

from the following two claims:
Claim. {Z: f(Z) < pp(Z)} ¢ U™

Proof. Otherwise, for some set A € U, and for every @ = (x1,...,2,) € [A]",
f(¥) < =, (this follows from lemma here [A]" is the set of increasing
n-sequences of elements of A).

Fix (21 ...,2,_1) € [A]""" (note that n—1 > 1). Then {z: f(z1,...,2p_1,2) <
r} € U. By normality, for some a(z1,...,7,-1) <K, and Ay, . 5 ) € U, for

every r € A,

$17'~-7In71)7
flxr, . o p_1,2) = a(xr, ..., Tp_1)

Thus, the function «: [A]"*1 — k is a projection of U"~! onto U: Indeed,
given B € U, there exists C € U such that [C]" C f~'B. We can assume that

C C AN A Az (else, intersect). So for every ¥ = (x1,...,2,) € [C]",
ze[ap-1

,,,,, on_1)> 80 f(x1,...,2p) = a(z1,...,2y-1). Thus, a"1BD [C]”_l.
Soa 'BeU" L
The projection « is non-trivial (else, f was trivial), contradicting the mini-

mality of n. O
Claim. {Z: f(Z) > p,(Z)} ¢ U™.

Proof. Assume otherwise. Fix A € U such that, for every & = (x1,...,2,) €
[A]", f(Z) > x,. Since f is a projection, and [A]" € U™, f" [A]" € U.
Define a function g from some subset of x to x as follows: For every y < &,

if there exists & = (x1,...,2,) € [A]" such that f(Z) =y, let -

gy) =min{z € A: e [Anz""" f(.z)=y}

Note that dom(g) 2 f” [A]", so dom(g) € U. Also, for every y € f" [A]", there
exists ¥ = (x1,...,m,) € [A]" such that f(%) = y. Therefore, x, < y. Thus,
9(y) < x, < y. So, on a set in U, g is regressive. By the normality of U,

there exists o < k such that, for some Y € U, ¢"Y = {a}. In particular, for
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every y € Y, there exists ¥ € [AN (a + 1)]" such that f(Z) = y. In particular,
f"[An(a+1)]" 2 Y. But |[[AN(a+1)]"| < k, so |Y| < k, a contradiction.
[

O

Let us recall our general context: (@), <q) is a x-distributive forcing notion,
with |Q| = k. We consider the forcing Pp~, where F* extends the filter of dense
open subsets of (). Assume that (p,: n < w) is a Prikry sequence for Pp-.

Our next observation is that two disjoint Prikry sequences in V [(p,, : n < w)],
which are both disjoint from (p,: n < w), induce two different non-trivial pro-

jections. Let us define the exact way in which two projections differ:

Definition 2.2.8. Suppose 1 <n < w. Two projections f: K™ — K, g: K* = K
of F*" onto F* are called equivalent, if {Z € Q™: f(Z) = g(¥)} € F*™ (i.e., f,g

represent the same element in the iterated ultrapower construction of F*™).

Proposition 2.2.9. Assume that {(a,: n < w),{(b,: n < w) are two disjoint
Prikry sequences in' V [(pn: n < w)], which are disjoint from (p,: n < w). Then,
for some n < w, there are two non-equivalent, non-trivial projections of F*"

onto F™*.

Proof. Denote by G C Pp+ the generic set corresponding to (p,: n < w).
Assume that o ,0 are Pp--names for (an:n < w), (bp:n < w). Choose
r,X)eq@ WhicL f02rces that 0,0 are Pr«-names for disjoint Prikry sequences,
both disjoint from the sequencle (;n n < w).

Apply lemmal2.2.3|and get parameters ny,m1, A3 C X and ng, msg, As C X
such that, for every ¢ € {1, 2}, the following property holds:

For every U = (v1,...vy,) € [A;]™, there exists p, € Q and B € F*, such

that —
1. (F,U, B%) € Pp-, and (7,77, B%) I+ o (m;) =ps
2. Forevery BE F*, BC A;, {p,: ve[B]" } € F*

Assume that n; < ny. Denote, for i € {1,2}, f;(¥) = piﬁ. Extend fy, fo
arbitrarily to domains Q™', Q"?, respectively. Let p,, n,: @™ — Q™ be the

function ppymy (V1 -3 Vngs- oy Vny) = (V1...,0,) (if N1 = N2, pnym, is the
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identity). During the following proof, we denote p = pp, ., for notational sim-
plicity. Let us claim that fs, f10p are two non-equivalent, non-trivial projections
of F*™? onto F*.

The non-triviality is similar to claim Let us prove that fo, f1 0 p are
non-equivalent. Assume otherwise. Apply lemma to find some C' € F*,
such that for every 7 € [C]™2, fi(v1,...,Vn,) = f2(¥1,- ., Vn,). By intersecting,
assume that—

CC (ﬁ A* Bé) N ( A* B,%) NANAsNX
veE[AL]<¥ ve[A2] <

Now, let us claim that the following set is dense above (7, C):

D = {{(F,7,8) € Pp-: Ia(P) > ny and (7,7, S) IF o (1) = o (1722)}

~1 ~2

This will finish the proof: Just take a generic H C Pp- such that (¥,C) € H.
In particular, (¥, X) € H, and it forces that o and o are disjoint. This
contradicts the density of D. Therefore, it sufﬁcles to pr(Q)ve that D is dense.
Indeed, take some (7, 7, S) above (7, C). Assume that 1h(7) > ng (else, extend).
Then —

(F,7,SN B! ) > (Fv1,...,Un,, B! VIF o (1) = fi(v1s s V)
<V1;<~~7Vn1> 1 <V17~~-7Vn1> ~1 1
and —
<F’ 17, S m B<2V1;-..,V1L2>> Z <7?7 V17 R UnZ’B?V1,~-',V'rL2>> ”_ gg(mz) = f2(V17 N V’I’Lz)
Therefore, (7,7,5 N B<1V y N B<2 y) IFo (M) =0 (ma). O
15-9Vny ViseesVngy ~1 ~9

It’s straightforward to generalize proposition to finitely many pairwise
disjoint Prikry sequences in V [(p,, : n < w)]; A generalization to infinitely many

pairwise disjoint Prikry sequences could be done in the following way:

Proposition 2.2.10. Assume that {(p,: n < w) is a Prikry sequence for Pp«.
Assume that <<p’g: n<w): &< k) is a set of pairwise disjoint Prikry sequences
for Pp« in V [{pn: n < w)], which are all disjoint from (p, : n < w). Then for
some n < w, there are k-many non-equivalent, non-trivial projections of F*"

onto F™*.
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Proof. Denote by G the Prikry-generic set corresponding to (p,: n < w). Let
o be a Pp--name for ((PE:n <w): £ < k). Assume that (7, X) € G forces that
the elements of o are pairwise disjoint Prikry sequences for Pg«, such that each
one is disjoint from the Prikry sequence corresponding to the canonical name
of the generic set. We slightly abuse the notation and denote g(f) by .
Apply lemma and get parameters ng, me, A¢ € X such that, fogr every
¢ < K, the following property holds: For every 7/ = (v1,...vp,) € [A¢]™, there

exist pg € @ and Bg € F*, such that -

1. (7,7, BS) € Pp-, and (7,7, BS) I+ o (1h¢) = pS
~g

2. For every B € F*, B C Ag, {pg : ve[B]" } e F*
Let I C & be a set cardinality x, such that for some n < w, and for every £ € I,
neg = n. For simplicity, let us assume that I = & for the rest of the proof.

Assume that for every £ < k, fe: Q" — @ is a function such that, for every
v e [Ae]™, fe(P) = pg. As in claim each fe is a non-trivial projection of
F*™ onto F™*.

We now prove that the projections f¢ are pairwise non-equivalent. Let &; #
&. It suffices to prove that {7 € Q™: fe, (V) = fe,(¥)} ¢ F*™. Assume the
opposite, and get C' € F* such that for every 7 € [C]", fe, (V) = fe, (V). By
intersecting, assume that —

Cc ( A B§3> n ( A* B§2> NAe N A, N X
vefAe, ] ve[Ae, ]~

Then, as before, the following set is dense above (7, C):

D = {{(7,7,S) € Ppe: Ih(7) > n and (7,7,5) IF o (rhe,) =0 (1hg,)}
~é1 ~Ea

And this is a contradiction, since (7, C) extends (', X), which forces that the

sequences o are disjoint. O
~E

Remark 2.2.11. By [3], it’s consistent from large cardinals that for Q = (k, €),
there exists a k-complete ultrafilter F*, such that the forcing Pp« has a generic

extension V [(pn: n < w)], which carries a sequence—
((pg:n<w): < k)
of pairwise disjoint Prikry sequences for Pp«, which are also disjoint from

<pn: ’I’L<w>.
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2.3 The Quotient Forcing

Assume that G is Pg+«-generic over V, with a corresponding Prikry sequence
(pn: n < w). Assume that H € V [(p,: n < w)] is RO(Q)-generic over V. Let
us consider the quotient forcing Pp+«/H (more details about the existence and

definition of the quotient forcing are included in the preliminaries).

Definition 2.3.1. We say that two elements (ay,...,an, A), (b1,..., by, B) of
Pp«/H can be balanced if they have extensions (in Pp«/H), {(a1,...,a,,A)
and {(by ..., by, B), such that h(an) = h(by).

Definition 2.3.2. We say that a forcing notion (P, <p) is cone-homogeneous,
if for every a,b € P there are extensions ' >p a, b’ >p b such that P/a’ and

P/’ are isomorphic.

Lemma 2.3.3. Assume that the quotient forcing Pp+/H is cone-homogeneous.
Suppose that (ay,...,an, A),{b1,...,b;m, B) € Pp«/H can’t be balanced. Then
(a1, ... an), (b1,...,by) could be extended to Prikry sequences {(an: n < w),

(by: n < w) for Pp«, which have a finite intersection, such that —
Vi{ap: n <w)] =V [(by: n < w)]

In particular, for some n < w, there exists a non-trivial projection of F*™ onto
F*.

Proof. Let p={ay,...,an,A"), g = (b1,...,bn, B’) be some extensions of the
given sequences, in Pp«/H, such that, there exists an isomorphism o € V [H],
o: (Pp-/H)/p — (Pp«/H) /q. Extend both p,q to generic Prikry sequences
for Pp«/H, {an: n < w), (by: n < w), such that the image of one under o gives
the other. Then V [(an: n < w)] = V [{by: n < w)], since o € V [H]. But the
Prikry sequences (a,: n < w), (b,: n < w) have a finite intersection (because
the original sequences cannot be balanced). Therefore, by theorem there

exists a non-trivial projection of F*™ onto F™*, for some n < w. O
Lemma 2.3.4. Assume that every pair of elements of Pp=/H can be balanced,

and that Pp«/H satisfies the following property:

() For every {(ay,...,an, X),(b1,...,b;m,X) € Pp«/H with h(a,) = h(bn),
and for every x1,...x, € X and C C X, (a1,...,0n,21,...,2,C) €
Pr«/H if and only if (b1,...,bm,x1,...,2x,C) € Pp-/H.
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Then Pp+/H is cone-homogeneous.

Proof. Assume that (ai,...,a,, A), (b1,..., by, B) are two elements in Pp«/H.
(ay,...,an,A) can be extended to a Prikry sequence of the quotient forcing,
(a;: 1 < w). By lemma there exists ng > n such that for every i > ny,
a; € B. Therefore, (a1,...,an,, AN B) belongs to the quotient forcing (in-
deed, if G is the generic set for Pp+«/H, which corresponds to (a;: i < w),
then G is generic over Pp- as well; Thus (a1,...,an,, AN B) € G. In par-
ticular, {(a1,...,an,, A N B) belongs to Pp«/H). Similarly, (b1,..., by, B) can
be extended to (b1,...,bm,, AN B) that belongs to the quotient forcing. We
can balance (ay,...,an,, AN B) and (by,...,bm,, AN B), and find extensions
(a1, ...,an,ANB) and (b; ..., by, AN B), such that h(a,) = h(by/). Now we
simply apply (*) to get the required isomorphism:

(a1, ... an, @1, .. 25, C) = (b1, ... by 21, .., 2k, C)
O
The condition (%) of lemma will hold in the natural examples which

will be considered.

2.4 Forcing A Club Disjoint From Inaccessibles

Let us consider an example. In this section, consider—

Q ={X C k: X is closed, bounded in k,

and doesn’t contain any inaccessible cardinal}

Ordered by X7 <@ X2 <= Xy N (maxX; +1) = X;. This forcing is designed

to turn & into a non-Mahlo cardinal, preserving inaccessibles below it.

Notation. We use the following notation throughout this section: For every set

Z of ordinals,
Z=ZU{a<sup(Z): sup(ZNa)=a}
Lemma 2.4.1. (Q, <) is s-distributive.

Proof. Assume £ < k, and let f: &€ = ON belong to V[H]|, where H C @ is Q-

generic over V. It suffices to prove that f € V. Assume without loss of generality
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that the weakest condition in @ forces that f is a Q-name for a sequence on
ordinals of length £&. Let ¢ € Q, and let po ~€ Q@ be such that max(pg) > &,
po > q and pg IF £(0) = 7y for some ordinal 7y. Proceed by induction. Assume
D, Tp are choseanor every B < «, where a < £. If @ = o* 4+ 1 is a successor,

pick some ordinal 7, and p, > pu-, such that p, IF f(&) = 74. If o is limit, let—

ph=Upe= (Um) USHP(UP&)
E<a {<a (E<a

(we claim that p* is a legitimate element of @Q): It suffices to prove that max (p¥)
is not an inaccessible. We note that max (pf) > &, since max(pg) > & If
max (p,) was an inaccessible, it was above £, with cofinality < c¢f(a) < a <&,
contradicting regularity). Now, pick some p, > pf such that f (&) is decided
to be some ordinal 7. This finishes the construction. -

We can repeat this construction above any g € @, so the elements of () which
force that f € V form a dense subset, and therefore intersect the generic set H.

It follows that f € V. O

Note that |Q| = k. Let F* be a s-complete ultrafilter which extends F,
the filter of dense open subsets of Q). As before, let 7: Q — « be such that
[7]» = k. Define the mapping h: Q@ — & by = — sup(z) = max(z). Let
G C Pp- be generic over V', and assume that (p,: n < w) is the corresponding

Prikry sequence.

Proposition 2.4.2. In V[G], define H* = {C*Na: a < k}, where C* =

Un<w P> and py, is defined recursively, as follows:

* bo n=0
= 2.1
P {pn \ max(p:_;) n >0 21)

Then H* is Q-generic over V. In particular, there exists a Pp«-name H*, such

that the weakest condition in Pp~ forces that H* is Q-generic over V. Moreover,

(1) =1

Proof. We prove first that H* is Q)-generic over V. The only non trivial property
is that H* intersects every dense open subset of Q. Let D C @ be a dense open
subset. Let —

E:{<Q17"'7qnaA>€PF* : U?:lq;keD}
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where ¢ are defined as in equation We claim that ¥ C Pp~ is dense. This
promises that H* N D # @: Simply take some (p1,...,pm,A) € GNE. So, for

o = maX(pm),

m
C*ﬂa:UpfeH*ﬂD
i=1
as desired.

As for the density of E: Assume that (gi1,...,¢n, A) € Pp«, and let § =
max (g, ) + 1. Define a subset of D:

Ds={peD:VZC4(p\dUZe D}

Then —

Ds= () Ds(2)
A<t

Where Ds(Z) ={pe D: (p\d)UZ € D}.

Now, given Z C §, Ds(Z) is dense and open. It’s simple to prove that
Ds(Z) is open. For density, take p € Q, let p’ € D be some extension of
(p\d)UZ. Now, let p” € D be some extension of (p’ \ §) Up. Then p” >q p,
and p” € Ds(Z).

If § < k, then 219 < k, since & is inaccessible; Thus, by k-distributivity of
@, Ds is dense and open. Therefore Dy € F*. Choose some q € Ds N A, such
that m(q) > d. So —

<Q17~--aanA> < <q1a"'7Qn7qﬂA>

and —

(O@)u@\é)w

i=1

$0 {q1,.--,qn,q, A) € E. This shows that E is dense in Pg+, and proves that
H* is, indeed, Q-generic over V.

Clearly, there exists a Pg«-name Ij * which is forced, by some condition
in Pp«, to be @Q-generic over V; But we would like to choose EI * such that
it’s genericity is forced by the weakest condition of Pp~. This could be done
using the maximal principle (see [6]): Let ¢(z) be a formula which defines x
from the canonical name of the generic set, in the same way H* was defined
from (p,: n < w). The weakest condition of Pg« forces Jz¢p(x), so by the
maximal principle, there exists a Pp«-name Ig *, for which (15(];{ *) is forced by

every condition. O
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By distributivity of @, every inaccessible cardinal below x in V, remains
inaccessible in V [H*]. It’s not hard to see that C* = UH™* is a club disjoint
from the set of inaccessibles below k. So & is not Mahlo in V [H*].

Proposition implies the existence of the quotient forcing, which we will
denote Pg+/C*. Note that Pp«/C* is a non-trivial forcing notion, since, in

V [H*], k is still regular.

Remark 2.4.3. Let us define the quotient forcing in a formal way. Denote by
RO(Q) the completion of Q to a complete boolean algebra, and leti: @ — RO(Q)
be the corresponding dense embedding (to simplify notations, we write RO(Q)

instead RO(Q) \ {1RO(Q)})' Then —

{g € RO(Q): for somep € H*, i(p) extends q}

is RO(Q)-generic over V, and belongs to V [H*|. Thus, there exists a projection
m: Pps = RO(Q), and we can define in V [H*] the quotient forcing:

Pp+/C* = {q € Pp-: for somepe H*, i(p) extends 7(q)} (2.2)

The Definition of the quotient forcing in formula is rather abstract, and
it’s hard to give a more explicit characterisation of Pgr«/C*. Nevertheless, we

can state some useful properties:

Lemma 2.4.4. Assume that {(aq,...,an, A) € Pp+/C*. Define, for everyi < n,

an element af € Q, as follows:

o = ao i=0
* ) @ \ max(a ) 1>0

Then —
n
Ja; = C* N (max (a,) +1)
i=1
Moreover, for every a < k, there exists an extension {(ag, ..., , A') € Pp« /C*

of {ag,...,an, A), such that —

’
n

LJa;-k Na=C"Na
i=1

Proof. We prove the “moreover” part, which implies that—

LJa;»k =C" N (max (a,) +1)
i=1
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by taking o = max (a,) + 1.

Assume that o < k. Let G’ C Pp+/C* be a generic set for the quotient
forcing, such that (ag,...,a,, A) € G'. Assume that (a;: i < w) is the corre-
sponding Prikry sequence. By lemma [0.2.5]

C* = Uaf
i<w
(af for ¢ > n are defined in the same way). Let (ag,...,an,A’) € G’ be some
element with maxa, > «. Then —

’
n

Ua;‘ Na=C"Na

i=1

O

Our goal in this section is to show that in Pg-/C* there are many pairs of
elements which cannot be balanced. This will be proved in proposition [2.4.7]
and will be applied in theorem [2.4.8

We use standard notations: Consider the ultrapower Ult (V, F*). For a
function f: @ — k, we denote by [f]. the standard equivalence class of f
in the ultrapower construction. Recall that 7: Q@ — & is a function such that
(7] p = K. Let Id: Q@ — @ be the identity function. For ordinals «, 5, denote
[, 8] ={y<B:v=a}, (,f) ={y<B:7>a}.

Proposition 2.4.5. There exists a function 7 : Q — K, an ordinal o < k and

a set B € F* such that:
1. For every x € E, max(z) > n*(z) > n(x)
2. For every x € E, x N7*(z) =x Nw(x)
3. For every x € E, *(z) < min(z \ a*)
4. For every p,q € E, if max(p) = max(q), and —
p 0 [x(p), max(p)] = ¢ N [x(p), max(p)]

then 7 (p) = 7*(q).
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Proof. We begin by constructing a sequence of functions, h;: Q — &, m;: kK = K
for every i < n, where n < w will be decided in the construction. We make sure
during the construction that [h;]p. > & and for every a < k, m;(a) < a. Also,
we define 7} = m; o h;.

Take ho(z) = max(x). Note that [ho|z. > K (equality cannot hold since the
image of h doesn’t contain any inaccessible cardinals). Define Wy = (ho), F*,
and let mo: £ — k be a function such that [mo]yy, = k. Then [mo]y, < [Id]y,
(since otherwise, Wy was a normal ultrafilter, concentrating on the set of inacces-
sibles, and thus, for some x € @, ho(z) = max(z) was inaccessible). Therefore,
{a < k: mp(a) < a} € Wy, and by changing mp on a set outside Wy, we can
assume that for every a < &, m(a) < a.

Assume that h; was constructed, such that [h;] g > k. Let us define h;qq.
Set W; = (h;), F*. Then W; is a non-trivial ultrafilter. Let m;: kK — K be a

function, such that [Wi]wi = k. Denote 7} = m; o h;. Note that —
{a € k: m;(a) is inaccessible} € W;

and thus —

{z € Q: 7(x) is inaccessible} € F*

so [7}] . is inaccessible, and therefore [Id] . N[7}] 7. is bounded in [7}] 7. (since

[Id] . is closed and disjoint from inaccessibles). If —
max ([[d] p. N [7]] ) < K
finish the construction, and fix some o* < k such that —
[Ld]g. 0[] pe €@

Else, define, for every z € Q, h;y1(z) = max (z N7/ (z)), and note that [h; 1] p. >
% (equality cannot hold, since x is inaccessible).

We claim that this construction must stop after finitely many steps. It’s
enough to argue that if the construction doesn’t stop, then for every i < w,
[75i1] g < [7f]pe (s0 [m}] pu is a strictly decreasing sequence of ordinals in the

ultrapower, and thus necessarily finite). Indeed, for every x in some set in F™,

i1 (@) = i1 (hip1(2)) < hiy1(2) = max (z N7} (7)) < 77 (2)
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Assume that n < w is the maximal such that 7, is defined. Denote 7* = 7}’.

Note that [7};] z. > K, since 7} projects F* into a non-trivial ultrafilter. Thus,
Ud) g N[ e = [Id] p N K
Take a set E € F™* such that for every x € E,
1. m*(x) is inaccessible.
2. zNna*(z) Ca*
J.znwi(x)=znNn(z) < i=n
4. max(x) > 7j(z) > ... > m(x) > 7(x)

Assume that p,q € E, max(p) = max(q) and p N [7(p),max(p)] = ¢ N

*
i

[7(p), max(p)]. Suppose that ¢ < n, 7f(p) = 7 (q), and let us prove that

mi 1 (p) = 7 1(q). It suffices to prove that h;(p) = hi(¢q). This is clear for
i = 0. For ¢ > 0, note that —

max (p N7 (p)) = max (¢ N (q)) (2.3)
indeed, since i < n, p N7} (p) #pNw(p), so pN[x(p), 7} (p)] # 0. But —
p N [w(p), max(p)] = ¢ N [r(p), max(p)]
and 7} (q) = 77 (p) > 7(p), so —
pN [r(p), 7 (p)] = anr(p), = (q)] # 0

and [2.3] follows.

Now, let us prove that for every x € E, n*(x) < min (z\ a*). It’s clear
that the equality 7*(z) = min (z \ @*) cannot hold, since 7*(x) is inaccessible.
Thus, it suffices to prove that 7*(z) < min (x \ «*). This is clear as well, since
otherwise,

min (z\ @) e zN7*(z) C a”

Lastly, for every x € E, max(z) # 7*(x) (because 7*(z) is inaccessible), and

thus max(z) > 7*(z). O
Lemma 2.4.6. The following set is dense in Pp«/C*:

D = {(q,X): {max(a): (¢,a,X) € Pp+/C"} is unbounded in k}
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Proof. Suppose otherwise. Let (7, X) € Pp+/C* be an element which has no

extension in D. Define, for every n < w,
Sy, = {max(s): for some p' € [Q]", ("D (s),X) € Pp+/C"}

Let us argue, by induction on n, that |S,| < k. For n = 0 this is clear. Assume
that |S,| < k. Let @ < & be some upper bound of S,, (we work in V' [H*], where

k is still regular, so Sy, is bounded in x). Let—
A={pelQ]": max(me(p)) < v and (¢, X) € Pp-/C"}

Note that |A| < k, since there are less then k sequences § € [Q]" with
max (mc(p)) < a. Also, for every p € A, (¢™p,X) extends (g, X), and thus
doesn’t belong to D. Therefore, there exists an upper bound 7(p) < k for the

set—
{max(a): (¢ p " (a)) € Pp+/C"}
Let 7 < k be an upper bound for the set {7(p): p € A}. Thus—
[Snta| <k
(since every element in S, 1 has a maximum less then 7), as required.

Denote S = U S,,. Then S is bounded in x, assume that by some § < k.

n<w

Extend (g, X) to a generic set G’ for Pp+/C*. Then G’ is generic for Pp- as
well, but is disjoint from the dense set {(p, A) € Pp»: max(mc(p)) > S}. O

Proposition 2.4.7. In P« /C*, every element has at least two extensions which

cannot be balanced.

Proof. Let {(qo,...,q,X) € Pp+/C* be an arbitrary element. Fix a set E € F*

and an ordinal a* < k as in proposition [2.4.5] i.e., such that —
1. For every z € E, max(z) > n*(z) > 7(x)
2. For every z € E, z N7*(x) =z N7(x)
3. For every x € E, n*(x) < min(z \ a*)

4. For every p,q € E, if max(p) = max(q), and —

pN[r(p), max(p)] = ¢ N [7(p), max(p)]
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then 7*(p) = 7*(q).

Extend {qo,...,q,X) € Pp+/C* to a Prikry generic sequence for Pg«/C*,
(Gn: n <w). By claim there exists k < w such that for every k' >k, qi €
E. Therefore, {(qo,...,qx, E’) belongs to Pr«/C* and extends (qo,...,q,X),
for some E' C E, E' € F*. Assume that max(q;) > o* (else, extend). Let D
be the dense subset from 1emma Assume that {qo,...,qx, E') € D (else,
extend). Denote ¢ = (qo, ..., qr). Let—

k

_ *

s=Ud
i=0

where ¢} is defined as in equation 2.1}

Assume that (¢, a1,...,an,A) and (q,b1,...,bn, B) both extend (g, E’) in
Pp+/C*, such that max(a;) # max(b;) (such aj,b; exists since (7, E') € D).
We prove that max(a;) # max(b;) for every ,j. Assume the contrary, and let
n € N be the least index such that for some m € N, max(a,,) = max(b,,). Take

the least such m. It follows that —

sU (Oaf \max(s)) =sU (6[)2‘ \max(s)) (2.4)
i=1 i=1
(by lemma . Consider the following cases:
1. m=1,n>1: By equation ,
an N (max(a,_1), max(a,)] = by N (max(a,—1), max(ay,)]
Now, since 7(ay,) € (max(a,—1), max(ay,)), it follows that —
an N [m(ay), max(ay,)] = by N [7(ay,), max(ay)]
and thus 7*(a,,) = 7*(b1). But this is a contradiction because —
7 (b1) < min (b; \ @) <max (an_1) < 7 (an)
(min (b; \ @*) < max (a,_1) follows since max (a,—1) € by \ a*, by [2.4).
2. n=1,m>1: Simply use a symmetric argument to get a contradiction.
3. m>1,n>1: By minimality of m,n,

max (ap—_1) 7 max (by,—1)
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Assume without loss of generality that max (a,—1) > max (by,—1). By

equation ,
apn, N (max(a,_1), max(a,)] = by N (max(a,—1), max(ay,)]
and since 7(a,) € (max(an—1), max(ay)), it follows that —
an N [1(ay), max(an)] = by, N [7(a,), max(a,)]
and thus 7*(a,,) = 7* (b, ). Therefore,
max (an,—1) = max (C* N 7*(a,)) = max (C* N7 (by,)) = max (by,—1)
a contradiction.
O

Theorem 2.4.8. Suppose that Pg«/C* is cone-homogeneous. Then Pp- has a
generic extension which contains a set ((£2: n < w): a < k) of pairwise disjoint

Prikry sequences for Pps.

Proof. Begin as in the last proposition: Let (&g,...,&,X) € Pp«/C* be an
arbitrary element in the quotient forcing. Take E € F* and a* < k as in
proposition m Find an extension (£, E') = (£o,...,&m, E') € Pp./C* of
(€0, ---,&,X) such that B/ C E, and such that the following holds: There
exists a set A,

AC f{a: (€7 (a), E') € Pp-/C"}

for which {max(a): a € A} is unbounded in x (this is possible due to lemma
2.4.6). Then |A| = k, since & is still regular in V [H*], and by shrinking A, we
can assume that a # o’ € A — max(a) # max(a’). Enumerate A = (ay: a < k).

For every a < k, denote py = (£ (aa),E') € Pp,/C*. As in the last
proposition, note that for a # o/, pa, par cannot be balanced. Moreover, if we
extend such p,,p. to generic Prikry sequences for the quotient forcing, those
sequences will be disjoint (aside from the constant initial segment 5 that they
share).

Define—

D, = {q € Pp«/C*: for some extension p’ of p,, (Pp+/C*) /q ~ (Pr-/C*) /p'}
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(where ~ denotes isomorphism between forcing notions). Then for every a < k,

D,, is dense in Pp-/C*, by cone-homogeneity of Pr«/C*. Enumerate—
D= {(Dy: a <k)

For every a < k and q € D,, fix an isomorphism o,(q) € V [H*] between
(Pp«/C*) /q and (P« /C*) /p’, for some p’ above p,.

Extend pg to a generic Prikry sequence for Pg«/C*, with a corresponding
generic set Gy. G is a generic set for Pp+ over V as well. Work in V' [Gy]. Note
that the enumerations (p,: @ < k), (Dy: o < k) and (04(q): @ < Kk, g € D)
belong to V' [Gy].

For every 0 < a < K, Go N D, # 0, because Gy is generic for Pgr«/C* over
V[C*], and D, € V [C*] is a dense subset. Let g, € Pp+/C* be an element in

the intersection. Then the downwards closure, in Pg-/C*, of the set—

{(0a (9a)) (p): p € Gy and p extends g4}

is a generic set for Pp«/C* over V [C*] which contains p,; Denote it by G,.
Note that—
(Ga: 0 < < k) € V]G]

Each G, induces a generic Prikry sequence (£%: n < w) for the quotient forcing.
Those are generic Prikry sequences for Pp« over V as well; We can assume that
the sequences ({((2: n < w): a < k) are pairwise disjoint, by removing, from
each one, the constant initial segment of length m that they all share (after

removing the initial segments, each sequence will remain a Prikry sequence for

Pp+, not for Pp«/C*). O

Corollary 2.4.9. Suppose that F* is an ultrafilter which extends the filter of
dense open subsets of @, and such that the quotient forcing Pp«/C* is homo-
geneous. Then for some n < w, there are k-many non-equivalent, non-trivial

projections of F*" onto F*.

Proof. This is immediate from theorem and proposition 2.2.10 O

2.5 Cohen’s Forcing

In this section, let us consider @ = {X C k: sup(X) < s}, ordered by X; <g
X; <= XN (maxX; +1) = X;. Clearly, Q is k-closed. This forcing could

69



be densely embedded in the standard Cohen’s forcing,
Cohen(k) ={f: A—2: ACk and |A4| < k}.

(which is ordered by inclusion), so it generates the same generic extensions. In
our context, it’s simpler to use (Q, <qg); Therefore, in this section, we refer to
it as Cohen’s forcing, instead of Cohen(k).

As before, let F' be the filter generated by the dense open subsets of Q.
Assume k is k-compact, and let F* be a k-complete ultrafilter extending F'.
Let m: Q — k represent x in the ultrapower. Let h: Q — k be the function
h(zx) = sup(zx).

Consider the forcing Pp+. Suppose that (p,: n < w) is a Prikry sequence

for Pp~, with a corresponding generic set G over V. Set—
H ={C"Nna: a <k}

where C* = and p} are defined recursively, as follows:

*
n<w Pno

N Po n=20

m:{%\@w@Lg+n n>0 (2.5)

Proposition 2.5.1. H* € V[G] is Q-generic over V. In particular, there

exists a P-name H*, such that the weakest condition in Pp« forces that H* is

Q-generic over V. Moreover, (H*) = H*.
€]

~

Proof. We repeat the proof of proposition [2:4.2] with minor changes. Given a
dense open subset D C @, let—

EZ{<Q17"'7Q7UA>EPF* : U:l:1qz*€D}

Then it suffices to prove that E is dense in Pp«. Indeed, given (qo, ..., qn, A) €
Pp+, let 6 =sup (g,) + 1. Define a subset of D:

Ds={peD:VZC§(p\d)UZe D}
then Djs is dense and open; Take ¢ € AN Ds with 7(q) > sup (g,). Then—

@\®U<Uﬁ>€D

as desired. |



From the last proposition, it follows that the quotient forcing Pg«/C* could
be defined the same way as in the last section. In particular, the following

property holds:

Lemma 2.5.2. Assume that {(ag, ..., an, A) € Pp+/C*. Define, for everyi < n,

an element af € Q, as follows:

* ag 1=0
a. =
’ a; \ (sup(a;_;) + 1) i>0

then —
n
Ua;‘ =C*"N(sup(ay) +1)
i=1
Moreover, for every a < k, there exists an extension {(ag, ..., a0y, A') € Pp«/C*

of {ag,...,an, A), such that —

’
n

Ua;‘ Na=C"Na

i=1
Proof. Follow the same proof as in lemma|2.4.4]in order to prove the “moreover”

part. The first part follows by taking « = sup(a,) + 1. O

Let us argue that Pp./C* satisfies the property (*) of lemma[2.3.4]

Lemma 2.5.3. For every {(ag,...,an,X) , (bo,...,bm, X) € Pp«/C* with
sup(ay,) = sup(by,), and for every xq, ...,z € X and A C X,

(agy -y Qn, X0y - -+, Tk, AY € Ppx /C* <= (bo,...,bm,T0,..., Tk, A) € Pp«/C*
Proof. Let o: Pp~/{ag,...,an, XY — Pp«/{bo,...,bm,X) be the isomorphism—
o ((agy -y Qny Toy v oy Ty AY) = (Do, - -« s by Toy -« -y They A)

(note that without the assumption that sup(a,) = sup(b,,), o is not an iso-

morphism, since o ({ag,...,an,To,...,Zx, A)) is not necessarily an element of
Pr).

Let p = {ag,...,an, %0, ..., Tk, A), ¢ = o(p) = (bo, ..., bm,Zo, ..., Tk, A) be
extensions of (ag,...,an, X) , (bo,...,bm,X), respectively. Let us prove that

p € Pp-/C* <= q € Pp«/C*. Tts enough to show that 7(p) = w(q), where =
is the standard projection 7: Pp« — RO(Q). It suffices to argue that, for every

a€q,
gltae H < plaec H"
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By symmetry, it’s enough to prove one direction only. Assume that a € Q,

gl-a e H*. Let G’ C P+ be generic over V such that p € G’. Our goal is to

prove that a € (H*) . Define —
G/

~

G'={rePp:3p €GN (Pp/p),r <0op)}
Then G” is Pp«-generic over V: Indeed, given D C Pp« dense,
o~ (DN (Pp-/q))

is dense above p. Now, p € G’, so for some s € G', s > pand o(s) € DNG”. The
other properties needed to be checked for genericity of G” are straightforward.
Since ¢ € G”, it follows that a € (H*) . So its enough to argue that

G//
(H*) = (H*) . Assume that —
G// G/

~ ~

(agy - yan) (X1 < w)
is the Prikry sequence corresponding to G’. Then —
<b0, Ce 7bm>f\<$i: 1< UJ>

is the Prikry sequence corresponding to G”. Let —

m

n

_ * *

o= Ui = U
1=0 %

i=0

(the equality follows from lemma [2.4.4)). Denote —

C*™ =sU <<Uxf> \ (sup(s) + 1))

(g*)GI —{C*NB: <K} = (g)

Then —

G
O

Recall that property () above could be used to prove cone-homogeneity of
Pp+ /C*, under the assumption that every pair of elements in Pp-/C* could be
balanced. This might depend on F*. Currently, we don’t know if under some
choice of F*, every pair of elements could indeed be balanced. We actually
could modify F™* such that there are many elements in Pp+/C* which cannot be

balanced, and we will do so in this section; In any case, Modifying F* will require
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K to satisfy more than k-compactness, and we will assume 2”-supercompactness
of k.

Assume that x is 2®-supercompact. Therefore, there exists a definable em-
bedding j: V' — M such that crit(j) = &, 2* < j(x) and 2*M C M. Work
in M. For every dense open E C @Q, j(F) is dense open in j(Q), which is
j(k)-distributive. Therefore,

= iE (2.6)

ECQ dense open

is a dense open subset of j(Q) (we note that it’s an intersection of a 2"-sequence

of elements of M, which belongs to M).

Definition 2.5.4. For every p € D*, define an ultrafilter Fj, on Q as follows:
VX CQ X€F, «— pecjX)

F, is a k-complete ultrafilter on () which extends F', the x-complete filter

generated by the dense-open subsets of @,
F={FCQ: X CFE for some dense open subset X of Q}

Given p € D*, let M, ~ Ult(V, F,) be the transitive collapse of the ultra-
power, and j,: V — M, be the corresponding elementary embedding. Define

an elementary embedding k,: M, — M,

kp (7o () ((Id]F,)) = i(f)(p)

for every f: Q@ — V. Then ko j, = j, and ky([Id]F,) = p.
Remark 2.5.5. For every p € D*, pNk = [Id]g, N K.

Proof. Clearly pN & C k,(p) N &, since for every o < &, kp(a) = a. Now, given
a € kp(p) Nk, note that ky(a) = a € kyp(p), so, by elementarity, « € pN k. O

Before describing a general method to choose F*, such that many elements

cannot be balanced in the quotient forcing, we state the following lemma:

Lemma 2.5.6. The following set is dense in Pp«/C*:

D = {(q,X): {sup(a): (¢,a,X) € Pp+/C"} is unbounded in k}
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Proof. Repeat the proof of lemma [2.4.6 O

Theorem 2.5.7. Assume that k is 2% -supercompact. There exists a k-complete
ultrafilter F* which extends the filter of dense open subsets of @, such that
[Id] p. N K is bounded in k, and every condition in Pp-/C* has two extensions
which cannot be balanced.

Moreover, if Pp-/C* is cone-homogeneous, then Pp- has a generic extension
which contains a set ((£2:n < w): a < k) of pairwise disjoint Prikry sequences

for Ppx.

Proof. We prove that there are a k-complete ultrafilter F*, a set F € F™*, an
ordinal a* < k and a function 7: @ — k, such that F* extends the filter of

dense open subsets of @), and —
1. [7]p =K
2. For every x € F, x has a maximum max(z).
3. For every x € E, max(x) > w(x)
4. For every x € E, m(z) < min(z \ o)
5. For every p,q € E, if max(p) = max(q) then n(p) = 7(q).
Let I C & be a bounded subset. Let a* < k be such that sup(I) < a*. Define-
D ={peD":pnk=1I}

(where D* is the dense open subset of j(Q), defined in equation (2.6)). It’s clear
that D** is open, since D* is open. D** is not dense, but it is dense and open
above I' = TU{x +1}.

In V, let (A,: @ < k) be a partition of k to pairwise disjoint unbounded
subsets. Denote j ((Aq: @ < k)) = (A : a < j(k)). There exists an extension
p of I’ such that p has a maximum, max(p) € A), and p € D**. Let F* = F),.

Let m: Q — k be defined as follows:
m(z) = a < sup(z) € A,

(it’s well defined, since (A,: o < k) is a partition of k). Clearly, for every
p.q€Q,
sup(p) = sup(q) = 7(p) = 7(q)
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Note that p € j ({z € Q: max(x) exists}). So—
B, = {x € Q: max(x) exists} € F*

Therefore, for every p,q € F1, max(p) = max(q) — 7(p) = 7(q).
Next, we note that the property j(m)(p) = x implies [7]z. = k. Also,
J(m)(p) < min (p \ o*) implies that—

pej{zr e Q: m(z) <min(z\ a*)})

SO—

Ey,={x€Q: nm(x) <min(z\a*)} € F*

Finally, for every 8 < &,

{r € Q: sup(z) > B} € F*

SO—

Es={z€Q: sup(z) > n(x)} € F*

Take E = E1 N E> N E3 to get the required properties, 1 — 5 above. Note that
these properties, together with lemma [2.5.6] are enough to argue that, under
the cone-homogeneity assumption about Pp«/C*, Pp+ has a generic extension
which contains a set ({(§¥: n < w): a < k) of pairwise disjoint Prikry sequences:

Simply repeat the proofs of proposition [2:4.7] and theorem [2:4.8] O

The last theorem deals with the case where, in Ult (V,F*), [Id]p. Nk is
bounded in k. We give a similar result in the other case, where [Id]|p. Nk is

unbounded in .

Theorem 2.5.8. Assume that k is 2% -supercompact. There exists a k-complete
ultrafilter F* which extends the filter of dense open subsets of @, such that
[Id] . Nk is unbounded in k, and every condition in Pr«/C* has two extensions
which cannot be balanced.

Moreover, if Pp«/C* is cone-homogeneous, then P« has a generic extension
which contains a set ((€X:n < w): a < k) of pairwise disjoint Prikry sequences

for Ppx.

Proof. Let us choose F*, a set E € F* and a function 7: @) — &, such that—
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1. [7]p. = k.
2. For every z € E, sup(z) > m(x)
3. For every z € E,  Nw(x) = [Id]p. N7(x).

4. For every z € E and o < sup(z), (zA [Id];.) N (a,sup(x)) # O (in partic-

ular, sup(x) is limit).
5. For every p,q € E, if sup(p) = sup(q) then 7 (p) = 7(q).
Assume I C k is unbounded in &, and let —
D*={peD*: pNnk=1 A VYa<sup(p) I8 > o, <sup(p), B € i)\ p}

(where D* is the dense open subset of j(Q), defined in equation ) Since
j(I) is unbounded in j(k), D** is dense above I.

In V, let (An: @ < k) be a partition of k to pairwise disjoint unbounded
subsets, where Ay is the set of inaccessibles below k. Denote j ((Ay: a < K)) =
(AL: a < j(k)). There exists an extension p of I such that sup(p) € A, (in
particular, sup(p) is not an inaccessible cardinal) and p € D**. Take F* = F,.

Let Iy = [Id] .. Then by remark 2.5.5) I = pNk =I; N k. Thus -

pej({ge @ : Ya<sup(q) 38> o, B <sup(q), B€I\q})=
J{eeQ : Va <sup(q) 38> o, B <sup(q), B €11\ q})

therefore, by the definition of F* = F},,
Ey={qeQ : VYa<sup(q) I8 >, B <sup(q), B € 1 Aq} € F*

Let m: Q — K be defined as follows: For every ¢q € Q,
m(q) = o <= sup(q) € 4a

then [r],. = k. Thus, for every p,q € Q, if sup(p) = sup(q) then 7(p) = 7(q).

Moreover, note that—
Eyz={zeQ:znn(z)=LNn(x)} € F*
Indeed, if jp« is the ultrapower embedding of F*, then in Ult (V, F*),

LNk =jp-(I1)NE
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since jp« | & is the identity. Finally, clearly {z € Q: sup(z) > n(z)} € F*; We
claim that E3 = {z € Q: sup(z) > 7(z)} € F*. Else,

p € j({z: sup(z) is an inaccessible})

a contradiction.
Take E = E; N Es N E5. Let (qo,...,q,X) be an arbitrary element in
Pp+ /C*; Extend it to {(qo, - .., qk, E') where B/ C X N E, and such that the set—

A = {sup(a): a € E" and {(qo,...,qx,a, FE') € Pp+/C*}

is unbounded. Denote— i
s=Ja
i=0

(where ¢} are defined as in (2.5)). Take a1,as € A with sup(a1) # sup(az), and

let us prove that—
<CT’ a1, E/>a <q_’7 b17E/>

cannot be balanced. This suffices to finish the proof, exactly as in theorem [2.4.8

Suppose for contrary that—
(§,a1,...,an, E), (@ b1,...,bm, E) € Pp«/H"

and sup(ay,) = sup(by,). Let n € N be the least index such that for some m € N,
sup(an) = sup(a,,). Take the least such m. Then, by lemma [2.5.2)

sU (Ua; \ (sup(s) + 1)) =sU <Ub; \ (sup(s) + 1)) (2.7)

Let us derive a contradiction. We consider the following cases:

1. m = 1,n > 1 : Since sup(a,) = sup(by), it follows that m(a,) = 7(b1).
In particular, w(by) > sup(an—1). Now, by Nm(by) = Iy N mw(by). Take an
arbitrary a € (m(an—1),sup(an—1)). We remark that such « exists since

sup(a,—1) is limit. By equation (2.7)), and since m(b1) > sup(an—1),
(an—1 1) N (a,sup(an—1)) =0
a contradiction.

2. n=1,m > 1: Apply the symmetric argument to get a contradiction.

7



3. m > 1,n > 1: Since sup(ay,) = sup(bn,), it follows that 7(a,) = 7(by,).
By minimality of m,n, it follows that sup(a,—1) # sup(b,—_1). Assume
without loss of generality that sup(a,—1) < sup(bm,—1). Take an arbitrary
a € (sup(an—1),sup(bm-1)). By equation (2.7),

apn, N (o, sup(bm—1)) = by—1 N (,sup(by—1)) (2.8)
But sup(bpm—1) < 7(ay), so —
an 1) (0 50p(Bn 1)) = 1y 0 (@, 5D (byn1) (2.9)
Combining and ,
(b1 A1) N (a, sup(bp,—1)) = 0
a contradiction.

O

Corollary 2.5.9. For the ultrafilters F* from theorems [2.5.8, suppose
that Pp+«/C* is cone-homogeneous. Then there are k-many, non-equivalent,

non-trivial projections of F*" onto F*, for some n < w.
Proof. Combine the theorems with proposition [2.2.10 O

We currently don’t know if the following interesting scenario is possible:
Pp+ /C* is cone-homogeneous, where F* is one of the ultrafilters from theorems
This promises a generic extension for Pg«, which contains a set
((€2: n < w): a < k) of pairwise disjoint Prikry sequences for Pp-. Under this
scenario, Pp«/C* contains many pairs of elements which cannot be balanced,

so property () of lemma can’t be applied to prove cone-homogeneity.

2.6 Concluding Remarks

Suppose that V[p,: n <w] = Vig,: n < w], where (p,: n < w), (gn: n < w)
are pairwise disjoint Prikry sequence for Pp« over V. Then, as we proved, F™*
is a non-normal ultrafilter, and, for some n < w, F*" can be projected onto F*,

in a non-trivial way.
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Question 2.6.1. (Under suitable large cardinal azioms) Given a k-complete
filter F on K, could F be extended to a k-complete ultrafilter F* on k, such that

F*™ cannot be projected onto F* in a non-trivial way, for every n < w?

A positive answer promises that V [p,: n < w] # V [g,: n < w], whenever
(Pn:n < w), {gn: n < w) are pairwise disjoint Prikry sequences for Pp-. An-

other question is natural from our analysis:

Question 2.6.2. Even if we allow non-trivial projections of F*™ onto F*, can

we choose F* such that there are less then k such projections, up to equivalence?

Doing this for the forcing notion which adds a club disjoint from inaccessi-
bles, promises that the quotient forcing is not cone-homogeneous.

We remark that by [3], it’s consistent, from large cardinals, that for some
non-normal, k-complete ultrafilter F' on x, there are x many non-trivial projec-

tions of F? onto F.

Property (x) from lemma[2.3.4 holds in the natural examples we considered:
The proof we gave in the last section, holds both in the context of Cohen’s
forcing, and the forcing which adds a club disjoint from inaccessibles. This is
because the generic sets for both forcing notions were created, more or less,
in the same way. However, for the forcing which adds a club disjoint from
inaccessibles, lemma [2:3.4] could not be applied to prove cone-homogeneity of
the quotient forcing, because there are many elements which cannot be balanced.

As for Cohen’s forcing:

Question 2.6.3. Suppose that QQ = Cohen(r) is Cohen’s forcing. Does there
exist a choice of a measure F* which extends the filter of dense open subsets of
Q, and a generic set H C Q over V', such that every pair of elements in the

quotient forcing Pp+/H can be balanced?

A positive answer to this question, results in an homogeneous quotient forc-

ingE|

1 Tt looks like the negative answer is consistent. We plan to address this issue in a further
paper.
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