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Abstract

We study non-homogeneity of quotients of Prikry and tree Prikry forc-
ings with non-normal ultrafilters over some natural distributive forcing
notions.
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Introduction

Let 〈Q,≤Q〉 be a κ−distributive forcing notion of cardinality κ. For q ∈ Q let

Q/q = {p ∈ Q | p ≥Q q}. Consider FQ/q = {D ⊆ Q/q | D is a dense open }, for

every q ∈ Q. It is a κ−complete filter over a set of cardinality κ. Assuming large

cardinals, for example, if κ is a κ−compact cardinal, then every FQ/q extends

to a κ−complete ultrafilter F ∗Q/q. Let ~F ∗ = 〈F ∗Q/q | q ∈ Q〉.

Force with the corresponding tree Prikry forcing P~F∗ . There will be a V−generic

subset of Q in the extension.

We will study the resulting quotient forcing.

Our goal will be to prove the consistency of a strong occurrence of non-homogeneity

of this forcing:

Theorem. Consistently from κ+-supercompactness of κ, for every non-trivial,

κ-distributive forcing notion Q with |Q| = κ, there exists a choice of measures

~F ∗, such that the following property holds: Given two generic Prikry sequences

〈pn : n < ω〉, 〈qn : n < ω〉 for P~F∗ such that 〈qn : n < ω〉 ∈ V [〈pn : n < ω〉], it

follows that 〈pn : n < ω〉 = 〈qn : n < ω〉.
∗The work was partially supported by Israel Science Foundation Grant No. 58/14. We are
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This extends the main result of Koepke, Rasch and Schlicht [5] which deals

with normal measures only.

In the second chapter, we force with the standard Prikry forcing PF∗ , where

F ∗ = F ∗Q is a κ−complete ultrafilter which extends the filter of dense open

subsets of Q. We will study the possible consequences of having–

〈qn : n < ω〉 ∈ V [〈pn : n < ω〉]

for two disjoint generic Prikry sequences 〈pn : n < ω〉, 〈qn : n < ω〉. We will

prove that this induces a non-trivial projection of F ∗n onto F ∗, for some n < ω.

Notations

1. Forcing: We force over the ground model V . Given a forcing notion

〈Q,<Q〉 and elements p, q ∈ Q, p >Q q means “p extends q”. Let Q/q =

{p ∈ Q : p ≥Q q} be the cone of Q above q. If G ⊆ Q is generic over V ,

then, for every P -name σ
∼

,
(
σ
∼

)
G

is the interpretation of σ
∼

in V [G].

2. Sequences: The set of finite increasing sequences of ordinals below a

cardinal κ in denoted by [κ]
<ω

.

We extend this notation to strictly increasing finite sequences of elements

in a forcing notion 〈Q,<Q〉: [Q]
<ω

is the set of sequences 〈q0, . . . , qn〉,

where qi+1 >Q qi for every 0 ≤ i ≤ n − 1. The set [Q]
n

of increasing

sequences of length n is defined similarly. In the case where n = 0, [Q]
0

=

{〈〉}, i.e., the set which includes only the empty sequence.

Given a sequence ~a = 〈a0, . . . , an〉, we denote it’s length by lh(~a) = n+ 1.

The length of the empty sequence is 0. If 〈Q,<Q〉 is a forcing notion and

~a ∈ [Q]
n+1

, the maximal coordinate of ~a is denoted by mc(~a) = an. If ~a

is the empty sequence, we set artificially mc(~a) = 0Q.

We use the notation _ for concatenation of sequences: Given sequences

t = 〈α0, . . . , αn〉, s = 〈β0, . . . , βm〉, let t_s be the sequence –

〈α0, . . . , αn, β0, . . . , βm〉

(of course, [κ]
<ω

and [Q]
<ω

are not closed under concatenations).
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3. Trees: If 〈T,<T 〉 is a tree and t ∈ T , then SuccT (t) is the set of immediate

successors of t in T . We mostly work with (sub-trees of) trees of the form

[Q]
<ω

, where Q is a forcing notion, ordered by C,

〈a0, . . . , an〉 C 〈b0, . . . , bm〉

if and only if m ≥ n, and for every 0 ≤ i ≤ n, ai = bi.

Under these settings, for every t ∈ T , denote Tt = {s ∈ T : s C t or t C s}.

4. Ultrafilters: Given an ultrafilter V on κ and a function f : κ→ κ, denote

f∗V = {A ⊆ κ : f−1A ∈ V }. Also, for ultrafilters V,W , denote V ≤RK W

if for some function f : κ→ κ, V = f∗W (this is the Rudin-Keisler order).

If V ≤RK W ≤RK V , denote V ≡RK W .

Given a measure U on a cardinal κ and a function f : κ→ V , [f ]U is the

standard equivalence class of f in the ultrapower construction.

Preliminaries

We assume familiarity with forcing and large cardinals. We will use some stan-

dard arguments about distributive forcing notions, quotient forcings and limits

of ultrafilters. For sake of completeness, we provide the relevant details in this

section.

0.1 Distributivity

Definition 0.1.1. Given an uncountable cardinal κ, we say that a forcing notion

〈Q,<Q〉 is κ-distributive if forcing with Q adds no new < κ sequences of ordinals.

The following is well known (See, for example, [4]):

Proposition 0.1.2. Let κ be an uncountable cardinal, and 〈Q,<Q〉 be a sepa-

rative forcing notion. The following are equivalent:

1. Q is κ-distributive.

2. For every ξ < κ and a sequence 〈Dα : α < ξ〉 of dense open subsets of Q,⋂
α<ξ

Dα

is dense and open.
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3. For every ξ < κ, q ∈ Q and for every sequence 〈Dα : α < ξ〉 of dense open

subsets of Q above q, ⋂
α<ξ

Dα

is dense and open above q.

Remark 0.1.3. The last proposition will be applied as follows: Given a separ-

ative, κ-distributive forcing notion, 〈Q,<Q〉, and q ∈ Q, let –

Fq = {E ⊆ Q/q : E contains a dense open subset D of Q/q}

where Q/q = {p ∈ Q : p ≥Q q}. Then Fq is a κ-complete filter on Q/q. Under a

suitable large cardinal assumption, Fq can be extended to a κ-complete ultrafilter,

F ∗q .

The following lemma will be useful later:

Lemma 0.1.4. Let Q be a separative, κ-distributive notion of forcing of cardi-

nality κ. Then Q can be partitioned to κ-many disjoint dense subsets.

Proof. Assume that Q = {qα : α < κ}. For every A ⊆ Q with |A| < κ, let –

E(A) =
⋂
q∈A
{p ∈ Q : p >Q q or p, q are incompatible}

Then E(A) is a dense and open subset of Q, disjoint from A.

Let G : κ→ κ×κ be Godel’s Pairing function. We define a sequence 〈pξ : ξ <

κ〉 as follows: Assume that η < κ and 〈pξ : ξ < η〉 were defined. Let us define pη.

Assume that G(η) = (α, β). Choose pη ∈ E ({pξ : ξ < η}) such that pη extends

qβ . This finishes the construction.

Set, for every α < κ, Dα = {pξ : ∃β < κ G(ξ) = (α, β)} . We claim that

Dα is dense for every α < κ. Indeed, given qβ ∈ Q, let ξ = G−1(α, β). Then

pξ ∈ Dα and extends qβ .

By our construction, the dense sets 〈Dα : α < κ〉 are pairwise disjoint.

0.2 Quotient Forcings

Suppose that P,Q are two separative forcing notions, such that every generic

extension V [G] for P , contains a generic set H ∈ V [G] for Q over V . Under
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these settings, we describe a forcing notion in V [H] whose generic extensions

could be obtained by forcing directly with P over V .

We assume here that Q is a complete boolean algebra. This will not be the

case in further applications, but we can always replace Q with it’s completion,

RO(Q) (i.e., the complete boolean algebra in which Q densely embeds. To be

precise, we should remove from RO(Q) the strongest element, 1RO(Q)).

Definition 0.2.1. A projection π : P → Q is a function which satisfies:

1. If p′ extends p, then π(p′) extends π(p).

2. For every p ∈ P , π′′ (P/p) is dense above π(p) in Q.

We state some standard properties, which are presented with more details

in [4], for example.

Proposition 0.2.2. Assume that P,Q are separative forcing notions. Suppose

that H
∼

is a P -name for a generic set for Q, and this is forced by the weakest

condition in P . Define a function π : P → Q as follows: for every p ∈ P ,

π(p) =
∑
{q ∈ Q : p 
 q̌ ∈ H

∼
}

Then π is a projection.

Definition 0.2.3. Suppose that P,Q are separative forcing notions, and π : P →

Q is a projection. Assume that H is Q-generic over V . Define, in V [H], the

quotient forcing, P/H = {p ∈ P : π(p) ∈ H}, ordered by the order induced from

P .

Proposition 0.2.4. Let P,Q be as in the last definition. Then every generic

set G for P/H is generic for P over V as well. Also, V [H] [G] = V [G].

Lemma 0.2.5. Let P,Q be as above. Assume that H
∼

is a P -name, forced by the

weakest condition in P to be Q-generic over V . Let π : P → Q be the induced

projection. Let G be P -generic over V , and
(
H
∼

)
G

= H. Then for every generic

set G′ for the quotient forcing P/H over V [H],
(
H
∼

)
G′

= H.

Proof. Assume first that in V [G′], h ∈
(
H
∼

)
G′

. Then for some p ∈ G′, p 


ȟ ∈ H
∼

. Therefore π(p) ∈ H, and π(p) extends h; Thus, h ∈ H. So in V [G′],(
H
∼

)
G′
⊆ H. But

(
H
∼

)
G′
, H are Q-generic over V , so

(
H
∼

)
G′

= H.
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0.3 Limits of Ultrafilters

Definition 0.3.1. Assume that U,W and Vα, for every α < κ, are ultrafilters

on κ. Then U = W -lim〈Vα : α < κ〉 means that, for every X ⊆ κ,

X ∈ U ⇐⇒ {α < κ : X ∈ Vα} ∈W

Definition 0.3.2. A sequence 〈Vα : α < κ〉 of ultrafilters on κ is called discrete,

if there exists a partition 〈Aα : α < κ〉 of κ such that Aα ∈ Vα for every α < κ.

The next lemma is well known:

Lemma 0.3.3. Every κ-sequence of pairwise distinct normal ultrafilters on κ

is discrete.

Definition 0.3.4. Let U,W be ultrafilters on κ. We say that W <RF U (Rudin-

Frolik order) if there exists a discrete sequence 〈Vα : α < κ〉 of ultrafilters on κ,

such that U = W -lim〈Vα : α < κ〉.

The following lemmas are well known as well; For sake of completeness, we

provide the proof here.

Lemma 0.3.5. W <RF U →W <RK U .

Proof. Suppose that 〈Vα : α < κ〉 is a discrete sequence of ultrafilters such that

U = W -lim〈Vα : α < κ〉. Let 〈Aα : α < κ〉 be a partition of κ, such that Aα ∈ Vα
for every α < κ.

Let h : κ → κ be the function h(x) = α ⇐⇒ x ∈ Aα, i.e., h(x) is the

unique index α such that x ∈ Aα. Then X ∈ W ⇐⇒ h−1X ∈ U , since

h−1 (X) =
⋃
α∈X

Aα. In particular, W ≤RK U . Now, U,W cannot be Rudin-

Keisler equivalent: Else, there exists f : κ → κ such that f∗W = U , and f � A

is injective for some A ∈W ; Therefore, (h ◦ f)∗W = W , so h ◦ f is the identity

on a set in W . In particular, h � B is an injection for some set B ∈ U , A

contradiction.

Proposition 0.3.6. Suppose that U = W -lim〈Vα : α < κ〉, where 〈Vα : α < κ〉

is a discrete sequence of ultrafilters measures on κ.
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Let MU ' Ult (V,U) ,MW ' Ult (V,W ) be the ultrapowers of U,W , with

corresponding elementary embeddings jU , jW . Define V ′ ∈MW as follows –

V ′ = jW (Vα : α < κ) ([Id]W )

Then V ′ is a measure on jW (κ) and MU ' Ult (MW , V
′). Moreover, if j′ is the

ultrapower embedding of V ′, then j′ ◦ jW = jU .

MU ' Ult (MW , V
′)

V MW

jU

jW

j′

Proof. By elementarity, V ′ is a measure on jW (κ). It suffices to prove that

Ult (V,U) and Ult (MW , V
′) are isomorphic, and thus have the same tran-

sitive collapse. We define an isomorphism, definable in V , φ : Ult (V,U) →

Ult (MW , V
′), as follows:

φ ([f ]U ) = [jW (f)]V ′

for every function f with domain κ. Let us prove that φ is well-defined, and an

isomorphism. Suppose that [f ]U = [g]U . Then {α < κ : f(α) = g(α)} ∈ U , and

in the ultrapower by W ,

{α < jW (κ) : jW (f)(α) = jW (g)(α)} ∈ V ′

thus, [jW (f)]V ′ = [jW (g)]V ′ .

Proving elementarity is similar. Let us prove that φ is onto. Assume that

[f ]V ′ ∈ Ult (MW , V
′). For some g : κ→ V , f = [g]W . Since f : jW (κ)→MW is

a function, we can assume without loss of generality that, for every β < κ, g(β)

is a function from κ to V . Now, define f ′ : κ → κ as follows: For every α < κ,

set f ′(α) = g(βα)(α), where βα is the unique index β such that α ∈ Aβ . We

claim that φ([f ′]U ) = [f ]V ′ . It suffices to prove that –

{α < jW (κ) : jW (f ′)(α) = [g]W (α)} ∈ V ′

or –

{β < κ : {α < κ : f ′(α) = g(β)(α)} ∈ Vβ} ∈W

7



This holds: Indeed, fix β < κ. Then {α < κ : f ′(α) = g(β)(α)} ⊇ Aβ ∈ Vβ .

Let us prove the equality j′ ◦jW = jU . Denote, for every x ∈ V , the function

cx : κ→ V , defined as follows: ∀α < κ, cx(α) = x. Now, for every x ∈ V ,

φ([cx]U ) = [jW (cx)]V ′ = j′ ◦ jW (x)

where the last equality can be easily checked (we slightly abused the notation

and identified elements in Ult(MW , V
′) with their image under the transitive

collapse).

8



Chapter 1

Tree Prikry Forcing

1.1 Definitions and Basic Properties

Definition 1.1.1. κ is a κ-compact cardinal if every κ-complete filter on κ can

be extended to a κ-complete ultrafilter on κ.

Let κ be a κ-compact cardinal. Consider a κ-distributive forcing notion

〈Q,<Q〉 of cardinality κ. Let [Q]<ω be the full tree of finite <Q-increasing

sequences of elements of Q, ordered by end-extensions, i.e.,

[Q]<ω = {〈ν1, . . . , νn〉 : n < ω, νi ∈ Q and ν1 <Q ν2 <Q . . . <Q νn}

For t = 〈a1, . . . , an〉, s = 〈b1, . . . , bm〉 ∈ [Q]<ω, denote t C s if n ≤ m and for

every i = 1, . . . , n, ai = bi. For every non-empty sequence t = 〈a1, . . . , an〉 ∈

[Q]<ω, set mc(t) = an. If t = 〈〉, set artificially mc(t) = 0Q, where 0Q is the

weakest condition of Q.

Remark 1.1.2. If Q is separative, then, for every q ∈ Q, |Q/q| = κ. Indeed,

else, if Q/q = {pα : α < ξ} for some ξ < κ, define Dα = {p ∈ Q : p >Q

pα or p ⊥ pα}. Since Q is separative, Dα is dense and open for every α < ξ.

Then (Q/q) ∩
⋂
α<ξ

Dα = ∅, a contradiction.

For every t ∈ [Q]<ω, let Ft be the κ-complete filter generated by the subsets

of Q, which are dense and open above mc(t) –

Ft = {E ⊆ Q/mc(t) : D ⊆ E for some dense open subset D of Q/mc(t)}
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By κ-compactness of κ, for every t ∈ [Q]<ω, there exists a κ-complete ultrafilter,

F ∗t , which extends Ft. Denote ~F ∗ = 〈F ∗t : t ∈ [Q]
<ω〉 (in the next sections, we

will assume κ+-supercompactness of κ, and choose F ∗t more carefully).

Let us present a Prikry type forcing P~F∗ . We follow the presentation and

notations from [2].

Definition 1.1.3. Let t ∈ [Q]<ω. A tree T ⊆ [Q]<ω is a 〈F ∗s : s ∈ [Q]<ω〉-tree

with trunk t if –

1. T ⊆ [Q]
<ω

, ordered by end-extensions.

2. t is the trunk of T , i.e., for every s ∈ T , s C t or t C s.

3. For every s ∈ T such that t C s, SuccT (s) = {q ∈ Q : s_〈q〉 ∈ T} ∈ F ∗s .

Let 〈P~F∗ ,≤,≤
∗〉, consist of elements of the form 〈t, T 〉, where t ∈ [Q]<ω and

T ⊆ [Q]<ω is a 〈F ∗s : s ∈ [Q]<ω〉-tree with trunk t. We say that 〈t, T 〉 extends

〈s, S〉 if T ⊆ S (in particular, t B s). If, in addition, t = s, we say that 〈t, T 〉 is

a Direct Extension of 〈s, S〉, and denote it by 〈t, T 〉 ≥∗ 〈s, S〉.

We will show some Prikry-type properties of 〈P~F∗ ,≤,≤
∗〉. First, we define

the Prikry sequence corresponding to a generic set G ⊆ P .

Lemma 1.1.4. Let G be a P~F∗-generic set. Then –

C = ∪{t ∈ [Q]
<ω

: ∃T 〈t, T 〉 ∈ G}

is a <Q-increasing ω-sequence (we refer to it as the Prikry sequence corre-

sponding to G). Moreover, V [G] = V [C], and V [G] contains an ω-sequence of

ordinals, which is cofinal in κ.

Proof. It’s straightforward to show that C is a <Q-increasing ω-sequence. Also,

G ∈ V [C], since G = {〈t, T 〉 ∈ P~F∗ : ∀n < ω C � n ∈ T}.

It remains to show that κ changes it’s cofinality in V [G]. In V , fix a bijection

f : Q → κ. Let 〈pn : n < ω〉 ∈ V [G] be the Prikry sequence corresponding to

G. We show that {f(pn) : n < ω} is cofinal in κ in V [G]. Let α < κ. Define,

in V , the set Dα = {〈t, T 〉 : f(mc(t)) ≥ α}. It suffices to prove that Dα is

dense in P~F∗ . Indeed, take arbitrary 〈t, T 〉 ∈ P~F∗ . We note that f−1′′α is of

cardinality < κ, so f−1′′α /∈ F ∗t . Now, choose q ∈ SuccT (t) with f(q) ≥ α.

Then 〈t_〈q〉, T 〉 ∈ D.
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Lemma 1.1.5. Let T ⊆ [Q]<ω be a a 〈F ∗s : s ∈ [Q]<ω〉-tree with trunk t. Assume

that α < κ, and f : T → α is some function. Then there exists a 〈F ∗s : s ∈

[Q]<ω〉-tree S ⊆ T with trunk t, such that, for every n < ω, f � Levn(S) is

constant.

Proof. Assume for simplicity that t = 〈〉. First, let us prove the claim for each

n < ω separately. This is clear for n = 0. We proceed by induction on n < ω.

Assume the claim holds for n, and let us prove it for n+1. For every q ∈ Lev1(T ),

let Tq = {〈q1, . . . , qm〉 ∈ [Q]<ω : 〈q, q1, . . . , qm〉 ∈ T}. Let fq : Tq → α be defined

as follows: fq (〈q1, . . . , qm〉) = f (〈q, q1, . . . , qm〉). Then there exists Sq ⊆ Tq and

αq < α such that fq (〈q1, . . . , qn〉) = αq for every 〈q1, . . . , qn〉 ∈ Sq. Now, take

A ∈ F ∗〈〉, A ⊆ Lev1(T ) such that, for some β < κ, αq = β for every q ∈ A.

Define S = {〈q, q1, . . . , qm〉 : q ∈ A and 〈q1, . . . , qm〉 ∈ Sq}. Let us claim that

f � Levn+1(S) is constant. Let 〈q, q1, . . . , qn〉 ∈ S. Then 〈q1, . . . , qn〉 ∈ Sq, so

f (〈q, q1, . . . , qn〉) = αq = β.

Now, assume that for every n < ω there exists a 〈F ∗s : s ∈ [Q]<ω〉-tree,

Sn ⊆ T , such that f � Levn(Sn) is constant. Let S =
⋂
n<ω

Sn. Then S is a

〈F ∗s : s ∈ [Q]<ω〉-tree as desired.

Now, in a standard fashion, we conclude the following:

Lemma 1.1.6. (The Prikry Condition) Let 〈t, T 〉 ∈ P~F∗ and σ be a statement

in the forcing language. Then there exists a direct extension 〈t, S〉 ≥∗ 〈t, T 〉

such that 〈t, S〉 ‖ σ.

Corollary 1.1.7. P~F∗ preserves all cardinals.

The next lemmas will be applied in the next section.

Lemma 1.1.8. Assume that As ∈ F ∗s for every s ∈ [Q]<ω, and 〈pn : n < ω〉

is a Prikry sequence for P~F∗ . Then for some n0 < ω, and for every n ≥ n0,

pn+1 ∈ A〈p0,...,pn〉.

Proof. Assume that G ⊆ P~F∗ is the generic set corresponding to 〈pn : n < ω〉.

Define a dense set as follows:

D = {〈t, T 〉 ∈ P~F∗ : ∀s ∈ T, s B t→ SuccT (s) ⊆ As}

11



D is dense in P~F∗ . Indeed, given a condition 〈t, T 〉 ∈ P~F∗ , define a 〈F ∗s : s ∈

[Q]<ω〉-tree, T ′, such that for every s B t, SuccT ′(s) ⊆ SuccT (s) ∩ As (Apply-

ing the intersections inductively, shrinking T level-by-level). Then 〈t, T ′〉 ∈ D

extends 〈t, T 〉.

Now, take 〈s, S〉 ∈ G∩D. Then for every n ≥ lh(s), pn+1 ∈ SuccS (〈p0, . . . , pn〉) ⊆

A〈p0,...,pn〉.

Lemma 1.1.9. Assume that there exists a partition of Q, 〈As : s ∈ [Q]
<ω〉,

such that As ∈ F ∗s , for every s ∈ [Q]
<ω

. Let 〈pn : n < ω〉, 〈qn : n < ω〉 be a pair

of different Prikry sequences for PF∗ such that 〈qn : n < ω〉 ∈ V [〈pn : n < ω〉].

Then, for every i < ω there exists some k < ω, k ≥ i, such that {pn : k < n <

ω}, {qn : k < n < ω} are disjoint.

Proof. First, apply the last lemma: Let i0 < ω be such that, for every k ≥ i0,

pk+1 ∈ A〈p0,...,pk〉, and qk+1 ∈ A〈q0,...,qk〉. We can assume that i0 ≥ i, or else,

enlarge i0.

Assume for contradiction, that for every k ≥ i0, {pn : k < n < ω}, {qn : k <

n < ω} are not disjoint; So pn = qm for some n,m ≥ k. In particular,

A〈p0,...,pn−1〉 is not disjoint from A〈q0,...,qm−1〉, so 〈p0, . . . , pn−1〉 = 〈q0, . . . , qm−1〉.

This could be done for every k ≥ i0; Therefore, 〈pn : n < ω〉 = 〈qn : n < ω〉.

Our next observation is that, given G ⊆ P ~F∗ generic over V , there exists

H ∈ V [G] such that H is Q-generic over V .

Lemma 1.1.10. Given a generic Prikry sequence 〈pn : n < ω〉 for P~F∗ , define

H ∈ V [〈pn : n < ω〉], H = {q ∈ Q : ∃n < ω q ≤ pn}. Then H is Q generic

over V . In particular, if 〈Q,<Q〉 is a separative forcing notion, then P~F∗ is not

minimal, i.e., every generic extension, obtained by forcing with P~F∗ over V , has

a non-trivial intermediate model.

Proof. First, we prove that H is Q-generic over V . The only non-trivial property

is that, for every D ⊆ Q dense and open, D ∩ H 6= ∅. Indeed, given such D,

define, for every s ∈ [Q]
<ω

, As = D ∩ (Q/mc(s)). Then As ∈ F ∗s , and thus, for

some n0, and for every n ≥ n0, pn ∈ A〈p0,...,pn−1〉. In particular, pn ∈ D.

Assuming that Q is separative, it follows that H /∈ V . Moreover, V [H] (

V [〈pn : n < ω〉], since, in V [H], κ is still regular. Thus, P~F∗ is not minimal.
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Remark 1.1.11. By [5], P~F∗ might be minimal. Consider 〈Q,<Q〉 = 〈κ,∈〉.

Assume that 〈Uα : α < κ〉 is a sequence of pairwise distinct normal ultrafil-

ters. Set, for every t ∈ [κ]
<ω

, F ∗t = Umc(t) (more precisely, F ∗t = {A ∩

(κ \mc(t)) : A ∈ Umc(t)}). Under these conditions, it is proved in [5] that

every generic extension, which is obtained by forcing with P~F∗ over V , doesn’t

have non-trivial intermediate models, i.e., P~F∗ is minimal. In particular, if

〈pn : n < ω〉 and 〈qn : n < ω〉 are generic Prikry sequences for P~F∗ , such that –

〈qn : n < ω〉 ∈ V [〈pn : n < ω〉]

then–

V [〈qn : n < ω〉] = V [〈pn : n < ω〉]

By lemma 1.1.10, there exists a projection π : P ~F∗ → RO(Q). Given an

arbitrary generic set H ⊆ RO(Q) over V , the quotient forcing P ~F∗/H is non-

trivial, since κ is still regular in V [H].

Definition 1.1.12. We say that a forcing notion 〈P,<P 〉 is cone-homogeneous,

if for every a, b ∈ P there are extensions a′ >P a, b′ >P b such that P/a′ and

P/b′ are isomorphic.

Proposition 1.1.13. Let H ⊆ RO(Q) be generic over V . Suppose that P~F∗/H

is cone-homogeneous. Then there are two different Prikry sequences for P~F∗ ,

〈pn : n < ω〉, 〈qn : n < ω〉, such that 〈qn : n < ω〉 ∈ V [〈pn : n < ω〉].

Proof. Since P~F∗/H is non-trivial, there are incompatible elements 〈p0, . . . pn, T 〉,

〈q0, . . . qm, S〉 in P~F∗/H. By extending those elements, we can assume that, for

some i < ω, pi 6= qi. By cone-homogeneity, there exists an automorphism

σ ∈ V [H], mapping the cone of P~F∗/H above an extension of 〈p0, . . . pn, T 〉,

to the cone above some extension of 〈q0, . . . qm, S〉. Thus, there are pairs of

Prikry sequences for P~F∗/H, 〈pn : n < ω〉, 〈qn : n < ω〉, such that σ maps the

generic set (of P~F∗/H, over V [H]) corresponding to 〈pn : n < ω〉 into the generic

set corresponding to 〈qn : n < ω〉 (this follows by extending one sequence to a

generic Prikry sequence for the quotient forcing, and then applying the point-

wise image under σ). Since σ ∈ V [H], 〈qn : n < ω〉 ∈ V [H] [〈pn : n < ω〉] =
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V [〈pn : n < ω〉]. It’s clear that those sequences are different (because they have

different initial segments).

Remark 1.1.14. The same argument as in the last proposition proves that if

P~F∗ itself is cone-homogeneous, then there are two different Prikry sequences

for P~F∗ , 〈pn : n < ω〉, 〈qn : n < ω〉, such that 〈qn : n < ω〉 ∈ V [〈pn : n < ω〉].

1.2 Prikry Sequences Inside Generic Extensions

Assume that 〈pn : n < ω〉 is P~F∗ -generic over V . It’s natural to ask if V [〈pn : n < ω〉]

contains another Prikry sequence for P~F∗ , 〈qn : n < ω〉. If it does, could

〈pn : n < ω〉 and 〈qn : n < ω〉 be disjoint, or “far” from each other in any

other way?

By [5], there exists a variation of P~F∗ which is minimal, i.e., every generic

extension has no non-trivial intermediate models. We would like to consider

variations of P~F∗ which are not necessarily minimal, but still have the following

property: If 〈pn : n < ω〉, 〈qn : n < ω〉 are Prikry sequences for P~F∗ , and–

〈qn : n < ω〉 ∈ V [〈pn : n < ω〉]

then–

〈pn : n < ω〉 = 〈qn : n < ω〉

In particular, every generic extension, obtained by forcing with P~F∗ , doesn’t

have non-trivial intermediate models which are themselves generic extensions,

obtained by forcing with P~F∗ over V .

As a first example, we consider the case where the measures ~F ∗ are pairwise

distinct and normal. Then, we will consider the general case.

1.2.1 Trees With Pairwise Distinct Normal Measures

Suppose that 〈Q,<Q〉 = 〈κ,∈〉, and 〈F ∗t : t ∈ [κ]
<ω〉 is a sequence of pairwise

distinct normal ultrafilters. We note that, for every t ∈ [κ]
<ω

, any dense open

set of Q/mc(t) is an interval of ordinals of the form [α, κ) where α > mc(t).

Thus, any normal ultrafilter on κ will extend the κ-complete filter of dense and

open sets above mc(t). Under these settings, we have the following property:
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Theorem 1.2.1. Suppose that 〈Q,<Q〉 = 〈κ,∈〉, and ~U = 〈Ut : t ∈ [κ]
<ω〉 is a

sequence of pairwise distinct normal ultrafilters. Consider the forcing P~U (which

is the forcing P~F∗ , where, for every t ∈ [κ]
<ω

, F ∗t = {A∩ (Q/mc(t)) : A ∈ Ut}).

Then for every pair of Prikry sequences for P~U , 〈pn : n < ω〉, 〈qn : n < ω〉,

〈qn : n < ω〉 ∈ V [〈pn : n < ω〉] ⇐⇒ 〈pn : n < ω〉 = 〈qn : n < ω〉

Proof. Since 〈Ut : t ∈ [Q]
<ω〉 are pairwise distinct normal ultrafilters, there

exists a partition 〈As : s ∈ [Q]
<ω〉 of κ, such that As ∈ Us. Assume by con-

tradiction that 〈pn : n < ω〉, 〈qn : n < ω〉 are two Prikry sequences, such that

〈qn : n < ω〉 ∈ V [〈pn : n < ω〉].

Apply lemma 1.1.8 to find i0 < ω such that for every i ≥ i0, qi+1 ∈ A〈q0,...,qi〉
and pi+1 ∈ A〈p0,...,pi〉. Apply lemma 1.1.9 to find k ≥ i0 such that {pn : k ≤ n <

ω}, {qn : k ≤ n < ω} are disjoint. Denote by G the generic set over V which

corresponds to 〈pn : n < ω〉. Let σ
∼

be a P -name for the sequence 〈qn : n < ω〉.

Let 〈r, T 〉 ∈ G be an element which forces the following:

1. σ
∼

is a name of a P~U -generic Prikry sequence.

2. 〈σ
∼

(n) : k ≤ n < ω〉 is disjoint from 〈pn : k ≤ n < ω〉 (we use the canonical

name of the generic set to express 〈pn : k ≤ n < ω〉).

3. For every k < i < ω, σ
∼

(i) ∈ Aσ
∼
�i.

For notational simplicity, let us assume that r = 〈〉.

For every i < ω, define a partial function fi from some subset of T to Q, as

follows: Given t ∈ T ,

fi(t) = q ⇐⇒ ∃〈t, Ti(t)〉 ≥∗ 〈t, Tt〉 s.t. 〈t, Ti(t)〉 
 σ∼(̌i) = q̌ (1.1)

where Tt = {s ∈ T : t C s or s C t}. We note that fi(t) is well defined,

since 〈t, Tt〉 can’t have two direct extensions which force different values for

σ
∼

(̌i) (because any two such direct extensions are compatible). We proceed with

several lemmas:

Lemma 1.2.2. The following properties hold:

1. Assume that m < m′ and m′ ≥ k. Then dom(fm′) ⊆ dom(fm).

15



2. For every t ∈ T the set {m < ω : t ∈ dom(fm)} is finite.

3. Assume that s = 〈f0(t), . . . , fm(t)〉, m ≥ k and lh(t) ≥ k. Then s, t are

C-incompatible.

Proof. 1. Take t ∈ dom(fm′). Then for some Tm′(t) as in equation 1.1,

〈t, Tm′(t)〉 
 σ
∼

(m̌′) =

̂

fm′(t). There exists a unique s ∈ [Q]
<ω

such that

fm′(t) ∈ As. On the other hand, since m′ ≥ k, fm′(t) ∈ Aσ
∼
�m′ . Therefore,

〈t, Tm′(t)〉 
 σ∼ � m̌
′ = š. In particular, 〈t, Tm′(t)〉 
 σ∼(m̌) =

̂

s(m).

2. Assume the contrary. Then, from property 1, t ∈ dom(fm) for every

m < ω. Take H ⊆ P generic over V , such that 〈t, Tt〉 ∈ H. Then the

Prikry sequence (σ
∼

)H belongs to V , since σ
∼

(m) = fm(t) for every m < ω,

a contradiction.

3. This follows since the weakest condition forces that 〈σ
∼

(n) : k ≤ n < ω〉 is

disjoint from the Prikry sequence derived from the canonical name of the

generic set.

Lemma 1.2.3. There exists a 〈F ∗t : t ∈ [Q]
<ω〉-tree T ∗ ⊆ T , such that, for

every m < ω there exists n < ω, for which Levn(T ∗) ⊆ dom (fm), and, if n 6= 0,

Levn−1 (T ∗) ∩ dom (fm) = ∅. Moreover, given t ∈ Levn (T ∗), 〈t, T ∗t 〉 
 σ∼ (m̌) =̂

fm(t).

Proof. First, fix some i < ω. By applying lemma 1.1.5, there exists a 〈F ∗t : t ∈

[Q]
<ω〉-tree, Ti ⊆ T , with the following property: For every n < ω, Levn(Ti) is

entirely contained in dom(fi), or disjoint from dom(fi). Since all the trees Ti

for i < ω have the same trunk, T ∗ =
⋂
i<ω

Ti is a 〈F ∗t : t ∈ [Q]
<ω〉-tree.

Now, given m < ω, there exists n < ω, such that Levn (Tm) ⊆ dom (fm),

since 〈〈〉, Tm〉 has an extension which decides σ
∼

(m). Take the first such n.

Thus, Levn (T ∗) ⊆ dom (fm). If n 6= 0, then Levn−1 (Tm) ∩ dom (fm) = ∅;

Thus, Levn−1 (T ∗) ∩ dom (fm) = ∅.

Given m and n as above, and t ∈ Levn (T ∗), shrink T ∗ above t, such that

every extension belongs to Tm(t) (defined in equation 1.1). This ensures that

〈t, T ∗t 〉 
 σ∼ (m̌) =

̂

fm(t).
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For every i < ω, let ni < ω be the first level of T ∗ contained in dom (fi). We

note that 〈ni : i < ω〉 is unbounded, and, from the index k, weakly increasing

(this follows from lemma 1.2.2). Thus, there are unboundedly many i’s such

that ni < ni+1.

For every i < ω such that ni < ni+1, and min{i, ni} > k, let us shrink

Levni+1
(T ∗). Fix some t ∈ Levni+1−1 (T ∗). Then t ∈ dom (fi) (since ni+1− 1 ≥

ni). Denote s = 〈f0(t), . . . , fi(t)〉. Since min{ni, i} > k , s, t are C-incompatible,

and thus Us 6= Ut (this follows from property 3 in lemma 1.2.2).

We note that SuccT∗(t) ⊆ dom (fi+1). Let f∗i+1 : SuccT∗(t) → Q be defined

as follows:

∀q ∈ SuccT∗(t) f∗i+1(q) = fi+1 (t_〈q〉)

Extend f∗i+1 arbitrarily to the domain Q = κ, and let us consider the ultrafilter(
f∗i+1

)
∗ Ut. Then Us 6=

(
f∗i+1

)
∗ Ut: Else, Us ≤RK Ut, and by normality, Us = Ut,

a contradiction. Thus, there are sets Bt ∈ Ut, Ct ∈ Us such that f∗i+1
′′Bt∩Ct =

∅.

Let Zs = {t ∈ Levni+1−1(T ∗) : s = 〈f0(t), . . . , fi(t)〉}. We define a set Es ∈

Us, and for every t ∈ Zs, an ordinal δt, such that the following property holds:

For every a ∈ Es with a > δt, a ∈ Ct. Such a set Es exists: If |Zs| < κ, simply

take Es =
⋂
t∈Zs

Ct, and δt = 0. Else, assume that Zs = {tα : α < κ}. For every

α < κ, choose δtα = α, and take Es = 4
α<κ

Ctα (note that δt depends only on t).

Now, we shrink T ∗ above every t ∈ Zs twice. First, shrink T ∗ such that

SuccT∗(t) ⊆ Bt. Then, shrink T ∗ such that for every t′ ∈ Levni+1
(T ∗) with

t′ B t, fi+1(t′) > δt: This is possible, since otherwise, by κ-completeness, 〈t, T ∗t 〉

would have had a direct extension which decides the value σ
∼

(i+1), contradicting

the minimality of ni+1.

Let us describe a dense set in P~U :

Claim 1.2.4. The set D = {〈s, S〉 ∈ P~U : mc(s) /∈ f ′′lh(s)−1T
∗} is dense in P~U .

Proof. Let 〈s, S〉 ∈ P~U . Assume that lh(s) = i + 1 for some i < ω, such that

ni+1 > ni and ni, i are above k (else, extend 〈s, S〉). Take q′ ∈ SuccS(s) ∩ Es.

Denote s′ = s_〈q′〉.
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Now, assume, for contradiction, that for some t′ ∈ T ∗, q′ = fi+1(t′). By

extending or shrinking the sequence t′, we can assume that t′ ∈ Levni+1
(T ∗).

There exists t ∈ Levni+1−1T
∗, such that t′ B t. In particular, mc(t′) ∈ Bt.

Therefore, q′ = fi+1(t′) /∈ Ct. On the other hand, q′ > δt and q′ ∈ Es, so

q′ ∈ Ct. A contradiction.

Now, take a generic H such that 〈〈〉, T ∗〉 ∈ H. Assume that 〈q′i : i < ω〉 =

(σ
∼

)H . Then, for every m < ω, q′m ∈ f ′′m(T ∗). Therefore, 〈q′0, . . . , q′m, S〉 /∈ D, for

every 〈F ∗t : t ∈ [Q]
<ω〉-tree S with trunk 〈q′0, . . . , q′m〉. A contradiction, since D

is dense in P~U .

1.2.2 Trees With Arbitrary Measures

Motivated by theorem 1.2.1, it’s reasonable to ask whether a similar result

exists under more general settings. It turns out that the situation is much more

involved without the normality of the ultrafilters. Our goal will be to prove the

following theorem:

Theorem 1.2.5. It’s consistent, from κ+-supercompactness of κ, that for every

separative, κ-distributive notion of forcing Q with |Q| = κ, there exists a choice

of pairwise distinct ultrafilters ~F ∗ = 〈F ∗t : t ∈ [Q]
<ω〉, such that P~F∗ has the

following property: For every pair of Prikry sequences for P~F∗ , 〈pn : n < ω〉,

〈qn : n < ω〉,

〈qn : n < ω〉 ∈ V [〈pn : n < ω〉] ⇐⇒ 〈pn : n < ω〉 = 〈qn : n < ω〉

The proof of theorem 1.2.5 will be presented in two steps: First, we assume

that 〈qn : n < ω〉 ∈ V [〈pn : n < ω〉], and show that a certain connection between

the ultrafilters 〈F ∗t : t ∈ [Q]
<ω〉 is induced (theorem 1.2.7). Then, we prove that

the existence of a sequence of measures 〈F ∗t : t ∈ [Q]
<ω〉 without this connection

is consistent from κ+-supercompactness of κ (theorem 1.3.31). The first step is

presented in this section; The second step will be presented in the next section.

Definition 1.2.6. Let t ∈ [Q]
<ω

, and n < ω such that lh(t) < n. Denote

n′ = n− lh(t). Define an ultrafilter Un(t) as follows: A ∈ Un(t) if and only if –

{ν1 ∈ Q : {ν2 ∈ Q : . . . {νn′ ∈ Q : t_〈ν1, . . . , νn′〉 ∈ A} ∈ F ∗t_〈ν1,...,νn′−1〉 . . .} ∈ F
∗
t_〈ν1〉} ∈ F

∗
t

Un(t) is a non-trivial κ-complete ultrafilter on a set of cardinality κ –
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{t_ν : ν ∈ [Q/mc(t)]
n′}

Our goal, in this section, will be to prove the following theorem:

Theorem 1.2.7. Let 〈pn : n < ω〉, 〈qn : n < ω〉 be two different Prikry sequences

for P~F∗ , such that 〈qn : n < ω〉 ∈ V [〈pn : n < ω〉]. Assume:

1. π : Q→ κ is a function such that, for every t ∈ [Q]
<ω

,

[π � Q/mc(t)]F∗t
= κ

2. The ultrafilters 〈F ∗nort : t ∈ [Q]
<ω〉 are pairwise distinct, where –

F ∗nort = {X ⊆ κ : π−1′′X ∈ F ∗t }

Then there are C-incompatible sequences s, t ∈ [Q]
<ω

, n > lh(t) and functions

f, g : ∪ Un(t)→ Q, such that –

f∗Un(t) = g∗Un(t)-lim〈F ∗s_〈q〉 : q >Q mc(s)〉

and both f∗Un(t) , g∗Un(t) are non-trivial ultrafilters.

Proof. First, we note that there exists a partition 〈As : s ∈ [Q]
<ω〉 of Q, such

that As ∈ F ∗s : Indeed, fix a disjoint partition 〈Anors : s ∈ [Q]
<ω〉 such that for

every s ∈ [Q]
<ω

, Anors ∈ F ∗nors , and take As = π−1Anors .

We start with the same arguments applied in theorem 1.2.1. Assume that

〈pn : n < ω〉, 〈qn : n < ω〉 are two different Prikry sequences, such that 〈qn : n <

ω〉 ∈ V [〈pn : n < ω〉]. Apply lemmas 1.1.8 and 1.1.9 to find k < ω such that for

every i ≥ k, qi+1 ∈ A〈q0,...,qi〉, pi+1 ∈ A〈p0,...,pi〉, and {pn : k ≤ n < ω}, {qn : k ≤

n < ω} are disjoint. Denote by G the generic set over V which corresponds to

〈pn : n < ω〉. Let σ
∼

be a P -name for the sequence 〈qn : n < ω〉. Let 〈r, T 〉 ∈ G

be an element which forces the following:

1. σ
∼

is a name of a P -generic Prikry sequence.

2. 〈σ
∼

(n) : k ≤ n < ω〉 is disjoint from 〈pn : k ≤ n < ω〉 (we use the canonical

name of the generic set to express 〈pn : k ≤ n < ω〉).

3. For every k ≤ i < ω, σ
∼

(i) ∈ Aσ
∼
�i.
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For notational simplicity, let us assume that r = 〈〉.

For every i < ω, define a partial function fi, from some subset of T to Q,

just as in the proof of theorem 1.2.1: Given t ∈ T ,

fi(t) = q ⇐⇒ ∃〈t, Ti(t)〉 ≥∗ 〈t, T 〉 s.t. 〈t, Ti(t)〉 
 σ∼(̌i) = q̌ (1.2)

Lemma 1.2.2 holds here as well. Now, let us shrink T to a 〈F ∗t : t ∈ [Q]
<ω〉-tree,

T ∗, as follows:

Lemma 1.2.8. There exists a 〈F ∗t : t ∈ [Q]
<ω〉-tree, T ∗ ⊆ T , and strictly

increasing sequences 〈ni : i < ω〉, 〈mi : i < ω〉, such that –

1. Levni(T
∗) ⊆ dom(fmi), and for every t ∈ Levni(T

∗), 〈t, T ∗t 〉 
 σ
∼

(m̌i) =̂

fmi(t).

2. Levni(T
∗) and dom(fmi+1) are disjoint sets.

3. k < m0, n0.

Proof. First, fix some i < ω. By applying lemma 1.1.5, there exists a 〈F ∗t : t ∈

[Q]
<ω〉-tree, Ti ⊆ T , with the following property: For every n < ω, Levn(Ti) is

entirely contained in dom(fi), or disjoint to dom(fi). Since all the trees Ti for

i < ω have the same trunk, T ∗ =
⋂
i<ω

Ti is a 〈F ∗t : t ∈ [Q]
<ω〉-tree.

Assume that 〈nj : j < i〉 were defined, and let us define ni. Take some

extension 〈t, T ∗t 〉 of 〈〈〉, T ∗〉 such that t ∈ dom(fi) (such an extension exists, by

extending the given condition to one which decides the value of σ
∼

(̌i)). Assume

that lh(t) > sup{nj : j < i} (Else - extend it). Set ni = lh(t).

For every i < ω and t ∈ Levni(T
∗), let mt < ω be the maximal value of m

such that fm(t) exists (such maximal value exists, by part 2 of lemma 1.2.2).

By applying lemma 1.1.5 again, we can assume that mt is constant on every

level of T ∗ (else, shrink T ∗). Let mi be the constant value on level ni. Then

the sequence 〈mi : i < ω〉 is weakly-increasing, and for every i < ω, mi ≥ i.

By passing to a subsequence of 〈ni : i < ω〉, let us assume that 〈mi : i < ω〉

is strictly increasing, and n0,m0 ≥ k. We note that Levni(T
∗) ⊆ dom(fmi).

Moreover, by maximality of mi, for every t ∈ Levni(T
∗), t /∈ dom(fmi+1).

Now, for every i < ω and t ∈ Levni(T
∗), shrink T ∗ above t such that

{t′ ∈ T ∗ : t′ B t} ⊆ Ti(t), where Ti(t) is as in equation 1.2. It follows that
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〈t, T ∗t 〉 
 σ∼(m̌i) =

̂

fmi(t).

For every s ∈ [Q]
<ω

, with lh(s) = mi + 1 for some i < ω, define –

Zs = {t ∈ Levni(T
∗) : s = 〈f0(t), . . . , fmi(t)〉}

Inductively, for every i < ω, let us shrink T ∗ above Levni(T
∗). Fix such

i and t ∈ Levni(T
∗). Assume that s = 〈f0(t), . . . , fmi(t)〉. Then s, t are C-

incompatible (they at least differ in the coordinate k, since n0,m0 > k).

We construct a set B′′(t) ∈ Uni+2
(t), and shrink T ∗ above t, such that,

after shrinking, we have {t′ ∈ Levni+2
(T ∗) : t′ B t} ⊆ B′′(t). The first step to

construct B′′(t) will be the following observation: if –

(fmi+2)∗ Uni+2
(t) = (fmi+1)∗ Uni+2

(t)-lim〈F ∗s_〈q〉 : q >Q mc(s)〉

(we assume that fmi+2 and fmi+1 were extended arbitrarily on elements of

∪Uni+2
(t) which don’t belong to T ∗), then this proves theorem 1.2.7. Indeed,

s, t are C-incompatible, and (fmi+2)∗ Uni+2
(t), (fmi+1)∗ Uni+2

(t) are non-trivial

(otherwise, t would have had a direct extension which decides the value of

σ
∼

(mi + 1). This is not possible, since t ∈ Levni(T
∗)). Thus, we can assume, for

contradiction, that for every t, s as above,

(fmi+2)∗ Uni+2
(t) 6= (fmi+1)∗ Uni+2

(t)-lim〈F ∗s_〈q〉 : q >Q mc(s)〉

so there exists B(t) ∈ Uni+2(t) such that –

X(t) = {q ∈ Q/mc(s) : f ′′mi+2B(t) ∩As_〈q〉 ∈ F ∗s_〈q〉} /∈ (fmi+1)∗ Uni+2
(t)

Denote B′(t) = B(t) \ f−1mi+1
′′X(t).

Now, for every q ∈ Q/mc(s) and for every t ∈ Zs, define a set Cs_〈q〉(t)

as follows: If q /∈ X(t), then we know that f ′′mi+2B(t) ∩ As_〈q〉 /∈ F ∗s_〈q〉.

Let Cs_〈q〉(t) ∈ F ∗s_〈q〉 be a set disjoint from f ′′mi+2B(t). Otherwise, take

Cs_〈q〉(t) = Q/q.

Let us define a set Cs_〈q〉 ∈ F ∗s_〈q〉, and, for every t ∈ Zs, an ordinal δt

(which depends only on t), such that for every a ∈ Cs_〈q〉 with π(a) > δt, a ∈

Cs_〈q〉(t). Such a set exists: If |Zs| < κ, simply take Cs_〈q〉 =
⋂
t∈Zs

Cs_〈q〉(t),

and δt = 0. Else, assume that Zs = {tα : α < κ}. For every α < κ, choose

δtα = α. Fix q ∈ Q/mc(s). Since [π � Q/q]F∗
s_〈q〉

= κ, the required set Cs_〈q〉

could be defined as follows:
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Cs_〈q〉 = {a ∈ Q/q : ∀α < π(a), a ∈ Cs_〈q〉(tα)} ∈ F ∗s_〈q〉

Now, we finally define the set B′′(t) described above. Given t ∈ Levni(T
∗)

and s = 〈f0(t), . . . , fmi(t)〉, we claim that there exists a set B′′(t) ∈ Uni+2
(t),

such that B′′(t) ⊆ B′(t), and for every t′ ∈ B′′(t), π(fmi+2)(t′) > δt: Indeed,

else, by κ-completeness, there exists a direct extension of 〈t, T ∗〉 which forces

that π(σ
∼

(mi + 2)) = α∗ for some α∗ < κ; There exists a unique s′ such that

α∗ ∈ Anors′ . mi + 2 ≥ k, so the above direct extension forces in particular that

σ
∼
� mi + 2 = s′, and therefore t ∈ dom(fmi+1). This is a contradiction, since

t ∈ Levni(T
∗). Therefore, there exists B′′(t) as described above. Shrink T ∗

above t using B′′(t) ∈ Uni+2
(t).

Now, let us describe a dense subset D of P~F∗ . The density of D is a contra-

diction, just as in the end of the proof of theorem 1.2.1.

Claim 1.2.9. The set D = {〈s, S〉 ∈ P : mc(s) /∈ f ′′lh(s)−1T
∗} is dense in P .

Proof. Let 〈s, S〉 ∈ P . Assume that lh(s) = mi + 1 for some i < ω (else, extend

it). Take q ∈ SuccS(s), and q′ ∈ SuccS (s_〈q〉)∩Cs_〈q〉. Denote s′ = s_〈q, q′〉.

Now, assume, for contradiction, that for some t′ ∈ T ∗, q′ = fmi+2(t′). By

extending or shrinking the sequence t′, we can assume that t′ ∈ Levni+2(T ∗).

There exists t ∈ T ∗, lh(t) = ni, such that t′ B t. In particular, t′ ∈ B′′(t).

Therefore, π(q′) > δt, so q′ ∈ Cs_〈q〉(t). On the other hand, q′ = fmi+2(t′) ∈

f ′′mi+2B(t). Therefore Cs_〈q〉(t) and f ′′mi+2B(t) are not disjoint, so q ∈ X(t).

But q = fmi+1(t′), so t′ ∈ f−1mi+1
′′X(t). This is a contradiction to the definition

of B′(t).

This finishes the proof of theorem 1.2.7.

1.3 Extension Of The Kunen-Paris Construction

Our goal in this section will be to prove the following:

Theorem 1.3.1. The following is consistent from κ+-supercompactness of κ:

For every separative, κ-distributive forcing notion Q with |Q| = κ, and for every

t ∈ [Q]
<ω

, there exists a κ-complete ultrafilter F ∗t extending the filter of dense

open subsets above mc(t), such that there are no connections of the form:

f∗Un(t) = g∗Un(t)− lim〈F ∗s_〈q〉 : q ∈ Q/mc(s)〉 (1.3)
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for any pair of non-empty, C-incompatible sequences s, t ∈ [Q]
<ω

, and for every

f, g : ∪ Un(t)→ Q.

Assume GCH, and let κ be a κ+-supercompact cardinal. Assume that

j : V →M is an elementary embedding which witnesses the κ+-supercompactness

of κ, i.e., crit(j) = κ, κ
+

M ⊆ M and j(κ) > κ+. Assume that this embedding

is derived from a fine, normal measure on Pκκ+; Thus,

Lemma 1.3.2. The following properties hold:

1. V |= |j(κ)| = κ++

2. sup j′′κ++ = j(κ++)

3. j
(
κ+3

)
= κ+3

This is a standard lemma; A detailed proof is presented, for example, in [1],

section 4.

We would like to build a model which carries, for every t ∈ [Q]
<ω

, an ele-

mentary embedding jt, which witnesses the κ+-supercompactness of κ. Then,

use the embedding jt to extend Ft to a κ-complete ultrafilter F ∗t (the exact

way in which this is done will be explained later). The main idea here is that

using different elementary embeddings should prevent dependence between the

ultrafilters 〈F ∗t : t ∈ [Q]
<ω〉.

One possible way to construct many elementary embeddings, is to push

forward a well known construction of Kunen and Paris, which maximalizes

the number of normal measures on κ: Using κ+-supercompactness of κ, we

will construct a model which carries a definable sequence of elementary em-

beddings 〈jα : α < κ++〉, each one witnesses the κ+-supercompactness of κ;

This could be done such that the derived normal measures, Uα = {X ⊆

κ : κ ∈ jα(X)} are pairwise distinct, and, in a way, are “far” from each other.

Before we describe the construction, we fix a standard notation:

Notation. For a set S of ordinals, define –

Cohen
(
κ+, S

)
= {f : κ+ × S → 2: f is a partial function, |f | ≤ κ}
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Define an iteration of length κ+ 1, 〈Pα, Q
∼β

: α ≤ κ+ 1, β ≤ κ〉 with Easton

support (direct limits are taken in regular limit stages, inverse limits elsewhere).

For every inaccessible α ≤ κ, take Q
∼α

to be a Pα-name for the forcing:

Cohen(α+, α++) = {f : α+ × α++ → 2: f is a partial function, |f | < α+}

For every other value of α, let Q
∼α

name the trivial forcing. Denote for conve-

nience P = Pκ+1.

Let G be Pκ-generic over V , and g be Cohen(κ+, κ++)-generic over V [G]. We

will prove that the model V [G, g] has a definable κ++-sequence of elementary

embeddings, as described above:

Theorem 1.3.3. The model V [G, g] carries, for every α < κ++, a definable

elementary embedding, jα : V → Mα, such that jα ⊇ j and κ+

Mα ⊆ Mα, and

the derived normal measures, Uα = {X ⊆ κ : κ ∈ jα(X)}, are pairwise distinct.

As it turns out, constructing the ultrafilters F ∗t from the embeddings jα will

not be enough to rule out (1.3). Thus, we will construct another sequence of ele-

mentary embeddings, 〈jt : t ∈ [Q]
<ω〉, where, for every t ∈ [Q]

<ω
, jt is definable

in some intermediate model V [G, gt] ⊆ V [G, g] (so, jt will be an elementary

embedding with domain V [G, gt] and not V [G, g]). Then, we will define the

corresponding ultrafilters, F ∗t , each derived from jt in V [G, gt]. This method

will reduce the amount of Cohen functions which F ∗t depends on; This will be

necessary for our purposes.

In this section, we describe the constructions of the embeddings jα and

jt, for α < κ++ and t ∈ [Q]
<ω

. This will be done in subsections 1.3.1 and

1.3.2. The embeddings 〈jα : α < κ++〉 will be applied to prove theorem 1.3.3;

The embeddings 〈jt : t ∈ [Q]
<ω〉 will be applied to construct the ultrafilters

〈F ∗t : t ∈ [Q]
<ω〉. In subsection 1.3.3 we confirm that (1.3) cannot hold.

In subsections 1.3.1, 1.3.2 we will use standard methods for extending ele-

mentary embeddings. We follow mainly Cummings’ handbook article [1].

Notation. We fix some notations, which will be used throughout the entire

section:
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1. Assume that Q ∈ V [G, g] is a non-trivial, κ-distributive forcing notion,

with |Q| = κ. Since g is a generic set for a κ+-distributive forcing notion,

we can assume that Q ∈ V [G] (by identifying Q with an isomorphic order

on κ).

2. Denote, for every α < κ++, the function gα : κ+ → 2, defined as follows:

∀x ∈ κ+ gα(x) = g(x, α)

This is the α-th Cohen function which g adds (We identified the generic

set g with the function ∪g : κ+ × κ++ → 2 ).

3. Let N = Ult(V,U), where U = {X ⊆ κ : κ ∈ j(X)}. Let i : V → N be the

corresponding elementary embedding. Then crit(i) = κ and κN ⊆ N . We

note that (κ+)
N

= κ+ and (κ++)
N
< κ++.

4. Fix, in V [G, g], a subset X ⊆ κ++ \ (κ++)
N

with |X| = κ, and a bijection

φ : [Q]
<ω → X. By identifying Q with κ, we can actually assume that

φ,Q,X ∈ V [G], since g is generic for a κ+-closed forcing notion.

5. Denote g \ X = g ∩ (κ+ × (κ++ \X)× 2). This is the set of the Cohen

functions indexed by an element of κ++ \X, i.e., not of the form gφ(t) for

some t ∈ [Q]
<ω

.

6. For every t ∈ [Q]
<ω

, we would like to extend g \ X to a generic set for

Cohen (κ+, κ++), using only one Cohen function, gφ(t). This could be

done as follows: In V [G], fix an isomorphism–

σt : Cohen
(
κ+, {φ(t)}

)
→ Cohen

(
κ+, X

)
For every t ∈ [Q]

<ω
, define a function gt : κ

+ × κ++ → 2,

gt = (g \X) ∪
(
∪σt′′

(
gφ(t)

))
We identify gt with the generic set for Cohen (κ+, κ++), over V [G] it

defines. Clearly, V [G, gt] ⊆ V [G, g].
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1.3.1 Extending N With a Generic Set For i(P )

Let us extend N with a generic set for i(P ). i(P ) is an Easton iteration of length

i(κ) + 1. i(P )α = Pα for every α ≤ κ (if α < κ this holds because Pα ∈ Vκ. If

α = κ, this holds because a direct limit is taken at κ).

Since N ⊆ V , G is Pκ-generic over N . We would like to extend N [G] to a

model of the form N [G, g′, Hα, hα], for every α < κ++. Here:

1. g′ will be (Cohen(κ+, κ++))
N

-generic over N [G].

2. Hα will be i(P )[κ+1,i(κ))-generic over N [G, g′].

3. hα will be Cohen(i (κ+) , i (κ++))N[G,g′,Hα]-generic over N [G, g′, Hα].

Remark 1.3.4. Every construction which will be done in this subsection could

be applied on V [G, gt] instead of V [G, g]. So, in this subsection, we also extend

N [G] to a model of the form N [G, g′, Ht, ht], for every t ∈ [Q]
<ω

. Here:

1. g′ will be the same (Cohen(κ+, κ++))
N

-generic over N [G].

2. Ht will be i(P )[κ+1,i(κ))-generic over N [G, g′].

3. ht will be Cohen(i (κ+) , i (κ++))N[G,g′,Ht]-generic over N [G, g′, Ht].

Claim 1.3.5. Given X ∈ V [G] such that |X| ≤ κ and X ⊆ N [G], it follows

that X ∈ N [G]. In particular, V [G] � κN [G] ⊆ N [G].

Proof. First, let us show that it suffices to prove the claim for X a set of ordinals:

Given X ⊆ N [G], define X ′ = {rank(x) : x ∈ X}. Then X ′ ∈ N [G], and

let α > sup(X ′). In N [G], fix a cardinal µ and a bijection φ : V
N [G]
α → µ;

Then define X ′′ = {φ(x) : x ∈ X}. So X ′′ is a set of ordinals, and therefore

X ′′ ∈ N [G]. Thus, X = φ−1X ′′ ∈ N [G].

Now, let us prove the claim for a set of ordinals X. So X ∈ V [G], and

|X| ≤ κ. Since Pκ is κ-c.c., there exists a set of ordinals X ′ ∈ V such that

|X ′| ≤ κ and X ⊆ X ′. Since κN ⊆ N , X ′ ∈ N . Assume that σ
∼

is a Pκ-

name for X. For every α ∈ X ′, let Aα be an antichain, maximal among the

antichains contained in {p ∈ Pκ : p 
 α̌ ∈ σ
∼
}. Then, for every α < κ, |Aα| < κ,

so Aα ∈ N . It follows that ~A = 〈Aα : α ∈ X ′〉 ∈ N . Now, define in N [G]

the set {α ∈ X ′ : G ∩ ~A(α) 6= ∅}. We claim that this set is X (and, therefore,
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X ∈ N [G]). Clearly, {α ∈ X ′ : G ∩ ~A(α) 6= ∅} ⊆ X. On the other hand, given

α ∈ X, there exists p ∈ G such that p 
 α̌ ∈ σ
∼

; Now, we note that the following

set is dense in Pκ–

D = {q : q extends some r ∈ Aα} ∪ {q : q and p are incompatible}

So there exists q ∈ G ∩ D, and since p ∈ G, q extends some element in Aα.

Therefore, G ∩Aα 6= ∅.

Claim 1.3.6. Let g′ =
{
f ∩

(
κ+ × (κ++)

N × 2
)

: f ∈ g
}

. Then g′ ⊆ N [G].

Moreover, g′ is Cohen (κ+, κ++)
N [G]

-generic over N [G].

Proof. By the last claim, and since each f ∈ g′ has size ≤ κ, we have g′ ⊆

N [G]. We prove that g′ is Cohen (κ+, κ++)
N [G]

-generic over N [G]. Clearly g′

is downwards closed, and any f, f ′ ∈ g′ are compatible. Given a dense subset

D′ ∈ N [G] of Cohen (κ+, κ++)
N [G]

, we can define in V [G] the set –

D =
{
f ∈ Cohen

(
κ+, κ++

)
: f ∩

(
κ+ ×

(
κ++

)N × 2
)
∈ D′

}
It’s routine to verify thatD ∈ V [G] is dense in Cohen (κ+, κ++). Take f ∈ g∩D.

Then f∩
(
κ+ × (κ++)

N × 2
)
∈ N [G], and f∩

(
κ+ × (κ++)

N × 2
)
∈ g′∩D′.

Claim 1.3.7. Given X ∈ V [G, g] such that |X| ≤ κ and X ⊆ N [G, g′], it

follows that X ∈ N [G, g′]. In particular, V [G, g] � κN [G, g′] ⊆ N [G, g′].

Proof. We can assume that X is a set of ordinals. Then, X ∈ V [G, g], and

|X| ≤ κ. Since Cohen(κ+, κ++) is κ+-closed, it follows that X ∈ V [G]. As a

set of ordinals, X ⊆ N [G]. Therefore, X ∈ N [G].

Remark 1.3.8. Similarly, V [G, g′] � κN [G, g′] ⊆ N [G, g′], and, for every

t ∈ [Q]
<ω

, V [G, gt] � κN [G, g′] ⊆ N [G, g′] (we note that g′ ⊆ gt, since

X ⊆ κ++ \ (κ++)
N

).

In N [G, g′], consider the quotient forcing i(P )i(κ)/G ∗ g′. Denote it by

i(P )(κ,i(κ)). Our goal is to construct, for every α < κ++, a i(P )(κ,i(κ))-generic

set over N [G, g′], Hα, which belongs to V [G, g]. To do so, we need the following

standard lemma:

Lemma 1.3.9. In N , let µ be the first inaccessible cardinal above κ. Then –
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1. N [G, g′] � “i(P )(κ,i(κ)) is µ-closed”.

2. V [G, g′] � “i(P )(κ,i(κ)) is κ+-closed”.

Proof. 1 is standard (see [1], section 7, for details). As for 2, it is known

that V [G, g′] � κN [G, g′] ⊆ N [G, g′] and V [G, g′] � |µ| = κ+. Therefore,

V [G, g′] � “i(P )(κ,i(κ)) is κ+-closed”.

Lemma 1.3.10. In N [G, g′], let Z be the set of maximal antichains in i(P )(κ,i(κ)).

Then V [G, g′] � |Z| = κ+.

Proof. In N [G, g′], |i(P )(κ,i(κ))| = i(κ), and i(P )(κ,i(κ)) is i(κ)-c.c., since i(κ) is

Mahlo. Therefore, N [G, g′] � |Z| ≤ i(κ)<i(κ) = i(κ). Since V � |i(κ)| = κ+,

V [G, g′] � |i(κ)| = κ+. Therefore, V [G, g′] � |Z| ≤ κ+.

Now, V [G, g′] � |Z| = κ+: Otherwise, since–

V [G, g′] � “i(P )(κ,i(κ)) is κ+ closed ”

there would exist a condition p ∈ i(P )(κ,i(κ)) such that {q ∈ i(P )(κ,i(κ)) : q ≤ p}

intersects every element of Z, and thus a generic set for i(P )(κ,i(κ)), which

belongs to N [G, g′]; This is not possible since i(P )(κ,i(κ)) is non-trivial.

Now, we can construct a generic set for i(P )(κ,i(κ)) over N [G, g′], which

belongs to V [G, g]. This is done in the next lemma.

Lemma 1.3.11. There exists an injection A : 2<κ
+ → i(P )(κ,i(κ)), A ∈ V [G, g′],

such that, for every α < κ++, the following set, defined in V [G, g],

Hα = {p ∈ i(P )(κ.i(κ)) : ∃β < κ+ p ≤i(P )(κ,i(κ)) A(gα � β)}

is generic for i(P )(κ,i(κ)) over N [G, g′] (actually, Hα belongs to V [G, g′ ∪ gα]).

Proof. Work In V [G, g′]. Enumerate Z = {Zα : α < κ+}, where Z is as in

the last lemma. We construct a binary tree A of height κ+, of conditions from

i(P )(κ,i(κ)). Each branch in A will be an increasing sequence of such conditions.

We construct A as a function, A : 2<κ
+ → i(P )(κ,i(κ)).

Construction of A: Take the root A (〈〉) to be an arbitrary element of

i(P )(κ,i(κ)). Now, given α < κ+ and f ∈ 2α, assume that A(f) = s, and let us

define A (f_〈0〉) , A (f_〈1〉). Take two incompatible elements p, q ∈ i(P )(κ,i(κ))

above s. For p, there exists some p′ ∈ Zα such that p, p′ are compatible. Let p′′
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extend both of them. Similarly, choose q′′ which extends s and some element

q′ ∈ Zα. Set A (f_〈0〉) = p′′, A (f_〈1〉) = q′′. For limit levels of A, we use

κ+-closeness of i(P )(κ,i(κ)): Given a limit β < κ+ and f ∈ 2β , assume that

A (f � α) = sα, for every α < κ+. There exists s ∈ i(P )(κ,i(κ)) such that, for

every α < β, s extends sα. Set A(f) = s.

A is injective: Suppose that h1 6= h2 ∈ 2<κ
+

. If for some x ∈ dom(h2),

h1 = h2 � x, then A(h2) extends A(h1), so A(h1) 6= A(h2). Therefore, let us

assume that there exists x ∈ dom(h1)∩dom(h2) such that h1(x) 6= h2(x). Take

the first such x. Then A (h1 � x+ 1) , A (h2 � x+ 1) are incompatible. Thus,

A(h1) 6= A(h2) (Since A(hi) extends, or is equal to A (hi � x+ 1)).

Construction of Hα: Every maximal chain in the tree contains, for each

β < κ+, an extension of some element of Zβ . Given α < κ++, Hα is the

downward closure of the branch which corresponds to gα, and thus intersects

every maximal antichain. Hα is defined in V [G, g′ ∪ gα] from A and gα, and

clearly is a generic set for i(P )(κ,i(κ)) over N [G, g′].

We note that different Cohen functions gα, gα′ , induce different generic sets,

Hα, Hα′ : This holds, since the first splitting point between two branches con-

tains two incompatible elements.

Remark 1.3.12. Over V [G, g′], gα is reconstructible from Hα (this is trivial if

α < (κ++)
N

). More formally, fix α < κ++. then gα can be defined by a formula

with parameters A and Hα.

Proof. Fix α < κ++. Assume that β < κ+, and let us compute gα(β). Assume

that gα(β′) was computed for every β′ < β. Denote p = A (gα � β). Let

p0 = A (gα � β_〈0〉) , p1 = A (gα � β_〈1〉).

Exactly one of p0, p1 belongs to Hα; Assume without loss of generality that

p0 ∈ Hα. Since A is injective, there exists a unique h ∈β+1 2 such that A(h) =

p0 = A(gα � (β + 1)). Thus, gα(β) = h(β).

Lemma 1.3.13. For every α < κ++, i : V → N can be extended to an elemen-

tary embedding iα : V [G]→ N [G, g′, Hα]. Moreover, for every x ∈ N [G, g′, Hα]

there exists f : κ→ V [G], f ∈ V [G], such that x = iα(f)(κ).

Proof. We note that i′′G ⊆ G∗g′ ∗Hα for every α < κ: Indeed, for every p ∈ G,

there exists α < κ such that for every β ∈ [α, κ), p(β) = 0. Therefore, for
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every β ∈ [α, i(κ)), i(p)(β) = 0. Moreover, for every β ≤ α, i(p)(β) = p(β). So

i(p) ∈ G ∗ g′ ∗Hα.

Thus i : V → N may be extended to an elementary embedding iα : V [G]→

N [G, g′, Hα]. Since Hα ∈ V [G, g′ ∪ gα], iα is definable in V [G, g′ ∪ gα].

Now, given x ∈ N [G, g′, Hα], assume that σ
∼

is a i(Pκ)-name that is inter-

preted through G ∗ g′ ∗Hα as x:
(
σ
∼

)
G∗g′∗Hα

= x. Then there exists F : κ→ V

such that i(F )(κ) = σ
∼

. We can assume that for every α < κ, F (α) is a Pκ-name.

In V [G], define F ′ : κ → V [G], by setting F ′(α) = (F (α))G for every α < κ.

Then, by elementarity, i(F ′)(κ) = (i(F )(κ))G∗g′∗Hα = x.

Remark 1.3.14. For the construction of N [G, g′, Ht], take Ht = Hφ(t), and

it = iφ(t).

We turn to defining hα, the Cohen (i(κ+), i(κ++))
N[G,g′,Hα]-generic set over

N [G, g′, Hα], for every α < κ++.

Lemma 1.3.15. In V [G, g], define, for every α < κ++,

hα = {q ∈ (Cohen (i(κ+), i(κ++)))
N[G,g′,Hα] : q ⊆ ∪i′′αg}

Then hα is Cohen (i(κ+), i(κ++))
N[G,g′,Hα]-generic over N [G, g′, Hα]. More-

over, there exists an elementary embedding definable in V [G, g], which extends

iα (and therefore extends i),

i∗α : V [G, g]→ N [G, g′, Hα, hα]

and if Uα = {X ⊆ κ : κ ∈ i∗α(X)}, then N [G, g′, Hα, hα] = Ult(V [G, g] , Uα).

Proof. Clearly, the elements of hα are pairwise compatible, and hα is downwards

closed. Therefore, it suffices to prove that hα intersects any setD ∈ N [G, g′, Hα]

which is dense and open in Cohen (i(κ+), i(κ++))
N[G,g′,Hα]. Given suchD, there

exists F : κ→ V [G] such that D = iα(F )(κ). Assume without loss of generality

that F (β) is dense and open subset of Cohen (κ+, κ++) for every β < κ. Define,

in V [G],

D′ =
⋂
β<κ

F (β)

D′ is dense and open in Cohen(κ+, κ++). Take p ∈ D′ ∩ g. So iα(p) ∈

iα(F )(κ). Therefore, iα(p) ∈ i′′αg ∩ D. This shows that hα is indeed generic

over N [G, g′, Hα].
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Now, we note that i′′αg ⊆ hα, by the definition of hα. Therefore, there exists

an elementary embedding i∗α : V [G, g] → N [G, g′, Hα, hα] which extends iα.

Since hα ∈ V [G, g], i∗α is definable in V [G, g].

N [G, g′, Hα, hα] = Ult (V [G, g] , Uα) since for every x ∈ N [G, g′, Hα, hα]

there exists f : κ→ V [G, g], f ∈ V [G, g], such that x = i∗α(f)(κ). This is done

exactly as in lemma 1.3.13.

The ultrafilters 〈Uα : α < κ++〉 are destined to be the normal ultrafilters

derived from the extended embeddings j∗α. The following proposition states

that there are κ++ pairwise distinct ultrafilters among them:

Proposition 1.3.16. Assume that α 6= β are in the interval
[
(κ++)

N
, κ++

)
.

Then Uα 6= Uβ.

Proof. Assume the contrary. Then i∗Uα(G) = i∗Uβ (G), so G∗g′∗Hα = G∗g′∗Hβ .

Thus, Hα = Hβ (Indeed, assume that q ∈ Hα, and q
∼

is an i(P )κ+1-name for q,

and p ∈ G ∗ g′ forces that q
∼

belongs to i(P )(κ,i(k)). Then 〈p, q〉 ∈ G ∗ g′ ∗Hα =

G ∗ g′ ∗ Hβ , so the interpretation of q
∼

via G ∗ g′ belongs to Hβ). Consider

V [G, g′ ∪ gα]. Since Hα ∈ V [G, g′ ∪ gα], it follows that Hβ ∈ V [G, g′ ∪ gα].

Thus, by remark 1.3.12, gβ ∈ V [G, g′ ∪ gα]. This is a contradiction, since

α 6= β ≥ (κ++)
N

.

Finally, let us define ht for every t ∈ [Q]
<ω

. Note that hφ(t) and ht are not

defined in the same way.

Lemma 1.3.17. Assume that t ∈ [Q]
<ω

. In V [G, gt], define –

ht = {q ∈ (Cohen (i(κ+), i(κ++)))
N[G,g′,Ht] : q ⊆ ∪i′′t gt}

Then ht is Cohen (i(κ+), i(κ++))
N[G,g′,Ht]-generic over N [G, g′, Ht]. Moreover,

there exists an elementary embedding definable in V [G, gt], which extends it

(and therefore extends i),

i∗t : V [G, gt]→ N [G, g′, Ht, ht]

and if Ut = {X ⊆ κ : κ ∈ i∗t (X)}, then N [G, g′, Ht, ht] = Ult(V [G, gt] , Ut).

Proof. Just repeat the proof of lemma 1.3.15.
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Remark 1.3.18. Ut = Uφ(t), since the subsets of κ are the same in V [G, g] , V [G, gt]

and V [G], and i∗φ(t), i
∗
t both extend iφ(t).

1.3.2 Extending M With a Generic Set For j(P )

Let us extend M with a generic set for j(P ). Clearly, for every α ≤ κ, j(P )α =

Pα. Indeed, if α < κ, then j(P )α = j(Pα) = Pα. If α = κ, then it is inaccessible

in M , so a direct limit is taken at κ, and thus j(P )κ = Pκ.

Claim 1.3.19. G is j(P )κ generic over M , and V [G] � κ+

M [G] ⊆ M [G].

Moreover, g is Cohen (κ+, κ++)
M [G]

-generic over M [G], and V [G, g] � κ+

M [G, g] ⊆

M [G, g]. Similarly, for every t ∈ [Q]
<ω

, gt is Cohen (κ+, κ++)
M [G]

-generic over

M [G], and V [G, gt] � κ+

M [G, gt] ⊆M [G, gt].

Proof. Every dense subset of j(P )κ = Pκ which belongs to M , belongs to V as

well, so G is generic over M . V [G] � κ+

M [G] ⊆M [G] holds, since κ+

M ⊆M ,

and j(P )κ is κ-c.c.; Just follow the proof of claim 1.3.5. Therefore g ⊆ M [G].

Now, since (κ++)
M

= κ++, g is (Cohen(κ+, κ++))
M [G]

-generic over M [G].

Finally, V [G, g] � κ+

M [G, g] ⊆ M [G, g] follows similarly to claim 1.3.5, since

Cohen(κ+, κ++)M [G] is κ++− c.c., and M [G] is closed under κ+-sequences.

InM [G, g], consider the quotient forcing j(P )j(κ)/G ∗ g. Similarly, inM [G, gt],

consider the quotient forcing j(P )j(κ)/G ∗ gt, for every t ∈ [Q]
<ω

. We repeat

(briefly) the same arguments as before:

Lemma 1.3.20. 1. V [G, g] � “j(P )j(κ)/G ∗ g is κ++-directed-closed”.

2. For every t ∈ [Q]
<ω

, V [G, gt] � “j(P )j(κ)/G ∗ gt is κ++-directed-closed”.

Proof. We prove only 1, since 2 is completely analogous. In M , let µ be the

first inaccessible cardinal above κ. Every forcing Q
∼β

, with β > κ, is µ-directed-

closed. Therefore, M [G, g] � “j(P )j(κ)/G ∗ g is µ-directed-closed” (see [1], sec-

tion 7, for details). It is known that V [G, g] � κ+

M [G, g] ⊆ M [G, g], and

V [G, g] � |µ| = κ++. Therefore, V [G, g] � “j(P )j(κ)/G ∗ g is κ++-closed”.

Lemma 1.3.21. In M [G, g], let Z be the set of maximal antichains in j(P )j(κ)/G∗

g. Then V [G, g] � |Z| ≤ κ++. Similarly, if Zt is the set of maximal antichains

in j(P )j(κ)/G ∗ gt, then V [G, gt] � |Zt| ≤ κ++.
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Proof. In M [G, g], |j(P )j(κ)/G ∗ g| = j(κ), and j(P )j(κ)/G ∗ g is j(κ)-c.c., since

j(κ) is Mahlo. Therefore, M [G, g] � |Z| ≤ j(κ)<j(κ) = j(κ). Now, V � |j(κ)| =

κ++, and so V [G, g] � |j(κ)| = κ++. Therefore, V [G, g] � |Z| ≤ κ++.

Lemma 1.3.22. There exist, for every α < κ++, a j(P )j(κ)/G ∗ g-generic set

over M [G, g], H∗α, and two elementary embeddings, jα : V [G] → M [G, g,H∗α]

and kα : N [G, g′, Hα] → M [G, g,H∗α], such that jα = kα ◦ iα. The embeddings

are definable in V [G, g]. Moreover, κ
+

M [G, g,H∗α] ⊆M [G, g,H∗α].

M [G, g,H∗α]

V [G] N [G, g′, Hα]

jα

iα

kα

Proof. Let k : N →M be the natural embedding, defined as follows:

k (i(f) (κ)) = j(f) (κ)

Then crit(k) = (κ++)
N

: This follows because k(κ) = κ, and k((κ+)
N

) =(
k (κ)

+
)M

= κ+
M

= κ+
N

.

First, let us extend k : N →M to an elementary embedding k∗ : N [G, g′]→

M [G, g]. Let us show that k′′G ∗ g′ ⊆ G ∗ g. Given ~q ∈ G ∗ g′, k(~q) has length

κ+1. k fixes elements of G; As for elements of g′: Each p ∈ Cohen (κ+, κ++)
N [G]

has cardinality ≤ κ, so it’s domain is bounded in κ+ × (κ++)
N

. So k(p) = p.

Therefore, k acts as identity on G ∗ g′, and thus k : N →M can be extended to

k∗ : N [G, g′]→M [G, g].

Now, let us construct the generic set H∗α. Hα has cardinality |i(κ)| = (κ+)
V

.

Let us consider k∗′′Hα. For every ~p ∈ Hα, ~p is a condition in i(P )i(κ)/G ∗ g′,

so, by elementarity, k∗(~p) is a condition in j(P )j(κ)/G ∗ g.

In V [G, g], k∗′′Hα ∈ κ+

M , so k∗′′Hα ∈ M [G, g]. By κ++-directness of

j(P )j(κ)/G ∗ g, there exists a condition pα ∈ j(P )j(κ)/G ∗ g which extends every

element in k∗′′Hα. We note that V [G, g] thinks that j(P )j(κ)/G ∗ g is κ++-

closed, and has at most κ++ antichains (which all lie in M [G, g]), so we can

find a generic H∗α for j(P )j(κ)/G ∗ g over M [G, g], which belongs to V [G, g],

such that pα ∈ H∗α.

33



Now, since j′′G ⊆ G ∗ g ∗H∗α (this holds because a direct limit is taken at

κ), we can extend j to an elementary embedding jα : V [G]→M [G, g,H∗α].

As for k∗, we prove that–

k∗′′G ∗ g′ ∗Hα ⊆ G ∗ g ∗H∗α

Indeed, assume that ~p ∈ G, s ∈ g′ and ~q ∈ Hα. Then k∗ (~p_〈s〉_~q) =

~p_〈s〉_k∗(~q); Now, ~q ∈ Hα, so pα extends k∗(~q). Therefore, k∗(~q) ∈ H∗α.

So ~p_〈s〉_k∗(~q) ∈ G ∗ g ∗ H∗α, as desired. Therefore, we can extend k∗ to an

embedding kα : N [G, g′, Hα]→M [G, g,H∗α].

Now, since j = k ◦ i, we have, for every Pκ-name σ
∼

, and every α < κ++,

kα

(
iα

((
σ
∼

)
G

))
= kα

((
i
(
σ
∼

))
G∗g′∗Hα

)
=

((
j
(
σ
∼

))
G∗g∗H∗α

)
=

jα

((
σ
∼

)
G

)
So jα = kα ◦ iα.

Lastly, let us claim that κ+

M [G, g,H∗α] ⊆ M [G, g,H∗α]. Assume that X ∈

V [G, g] is a set of ordinals of cardinality κ+, and X ⊆M [G, g,H∗α]. In partic-

ular, X ⊆M [G, g], and thus X ∈M [G, g].

Remark 1.3.23. For every t ∈ [Q]
<ω

, the same proof yields a j(P )j(κ)/G ∗ gt-

generic set over M [G, gt], H
∗
t , which belongs to V [G, gt]. Also, two elementary

embeddings, jt : V [G] → M [G, gt, H
∗
t ] and kt : N [G, g′, Ht] → M [G, gt, H

∗
t ],

such that jt = kt ◦ it. The embeddings are definable in V [G, gt]. Moreover,

κ+

M [G, gt, H
∗
t ] ⊆M [G, gt, H

∗
t ].

M [G, gt, H
∗
t ]

V [G] N [G, g′, Ht]

jα

iα

kα

The next step will be to find a generic set for Cohen (κ+, κ++)
M [G,g,H∗α]

over M [G, g,H∗α]. We use a technique of Magidor. The proof of the following

theorem is basically given in [1], section 13:
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Theorem 1.3.24. (Magidor) There exists h∗α ∈ V [G, g] which is a generic set

for –

Cohen
(
j(κ+), j(κ++)

)M [G,g,H∗α]

over M [G, g,H∗α], for every α < κ++. Moreover, j : V →M can be extended to

an elementary embedding, definable in V [G, g],

j∗α : V [G, g]→M [G, g,H∗α, h
∗
α]

Claim 1.3.25. For every α < κ++, the embedding–

kα : N [G, g′, Hα]→M [G, g,H∗α]

can be extended to–

k∗α : N [G, g′, Hα, hα]→M [G, g,H∗α, h
∗
α]

Moreover, k∗α ◦ i∗α = j∗α.

Proof. Let us claim that k′′αhα ⊆ h∗α: Indeed, assume that q ∈ hα. Since hα

is the downwards closure of i′′αg, q ⊆ iα(p) for some p ∈ g. Thus, kα(q) ⊆

kα (iα(p)) = jα(p) ∈ h∗α. So kα(q) ∈ h∗α.

Claim 1.3.26. V [G, g] � κ+

M [G, g,H∗α, h
∗
α] ⊆M [G, g,H∗α, h

∗
α].

Proof. As usual, it’s enough to consider only sets of ordinals. Assume that X

is a set of ordinals, X ⊆ M [G, g,H∗α, h
∗
α], |X| ≤ κ+ and X ∈ V [G, g]. In

particular, since X is a set of ordinals, X ⊆M [G, g] (Actually, X ⊆M , but we

need less than that). Therefore, X ∈M [G, g].

This finishes the proof of theorem 1.3.3: For every α ∈
[
(κ++)

N
, κ++

)
,

there exists a definable embedding j∗α : V [G, g]→ Mα = M [G, g,H∗α, h
∗
α], such

that crit(jα) = κ, κ
+

Mα ⊆ Mα, and the derived normal measures, Uα = {X ⊆

κ : κ ∈ jα(X)}, are pairwise distinct.

M [G, g,H∗α, h
∗
α]

V [G, g] N [G, g′, Hα, hα]

j∗α

i∗α

k∗α

35



Now, let us extend the embeddings jt for t ∈ [Q]
<ω

. Magidor’s method yields a

generic set h∗t ∈ V [G, gt] for Cohen (j(κ+), j(κ++))
M [G,gt,H

∗
t ] overM [G, gt, H

∗
t ];

Just repeat the proof of theorem 1.3.24. We can extend jt : V [G]→M [G, gt, H
∗
t ],

kt : N [G, g′, Ht]→M [G, gt, H
∗
t ] to embeddings j∗t : V [G, gt]→M [G, gt, H

∗
t , h
∗
t ],

k∗t : N [G, g′, Ht, ht]→M [G, gt, H
∗
t , h
∗
t ] definable in V [G, gt], and k∗t ◦ i∗t = j∗t .

M [G, g,H∗t , h
∗
t ]

V [G, gt] N [G, g′, Ht, ht]

j∗t

i∗t

k∗t

1.3.3 Getting The Required Property

Work in V [G, g], the model built in the last section. Recall our goal: Given a

separative, κ-distributive notion of forcing Q ∈ V [G, g] with cardinality κ, we

describe a method to extend each Ft to a κ-complete ultrafilter, such that the

following situation is ruled out:

f∗Un(t) = g∗Un(t)− lim〈F ∗s_〈q〉 : q ∈ Q/mc(s)〉

for any pair of non-empty, C-incompatible sequences s, t ∈ [Q]
<ω

, and for every

f, g : ∪ Un(t)→ Q.

We assumed that Q ∈ V [G, g], Q is a set of ordinals (by passing to an

isomorphic forcing notion). Therefore, by κ+-closure of Cohen(κ+, κ++),

〈Q,≤Q〉 ∈ V [G]

Recall also the subset X ⊆ κ++ \ (κ++)
N

and the bijection φ : [Q]
<ω → X. We

assumed X,φ ∈ V [G, g] as well.

Proposition 1.3.27. There exists a sequence 〈F ∗t : t ∈ [Q]
<ω〉 and a function

π : Q→ κ such that, for every t ∈ [Q]
<ω

,

1. F ∗t is a κ-complete ultrafilter which extends Ft.

2. [π � Q/mc(t)]F∗t
= κ.

3. X ∈ Uφ(t) if and only if {p ∈ Q/mc(t) : π(p) ∈ X} ∈ F ∗t .
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4. F ∗t ∈ V [G, gt].

Proof. Fix a partition of Q to dense subsets, 〈Dξ : ξ < κ〉 ∈ V [G], as promised

in lemma 0.1.4. Fix t ∈ [Q]
<ω

, and let us describe the construction of F ∗t . Work

in V [G, gt]. j′′t Ft belongs to M [G, g,H∗t , h
∗
t ], by closure under κ+-sequences.

Now, each D ∈ j′′t Ft is a dense open subset of jt(Q), and by j(κ)-distributivity,⋂
j′′αFt is a dense open set. Denote jt(〈Dξ : ξ < κ〉) = 〈D′ξ : ξ < j(κ)〉. Then

each D′ξ is dense in jt(Q). Take qt ∈ D′κ ∩
⋂
j′′t Ft. Now, let F ∗t = {X ⊆

Q/mc(t) : qt ∈ jt(X)}.

Then, in V [G, g], F ∗t is a κ-complete ultrafilter extending Ft. Let π : Q→ κ

be the function which maps every p ∈ Q to the unique β such that p ∈ Dβ .

First, we note that F ∗t ∈ V [G, gt]. Thus, F ∗t ∈ V [G, g]. It remains an

ultrafilter in V [G, g], since V [G, g] , V [G, gt] have the same subsets of κ.

Assume that X ⊆ Q, X ∈ Ft. Then qt ∈ jt(X), since jt(X) ∈ j
′′

t Ft. So

Ft ⊆ F ∗t . Now, recall that Uφ(t) is the normal ultrafilter on κ generated by jt.

Thus –

X ∈ Uφ(t) ⇐⇒ κ ∈ jt(X) ⇐⇒ jt(π)(qt) ∈ jt(X) ⇐⇒

qt ∈ jt ({p ∈ Q/mc(t) : π(p) ∈ X}) ⇐⇒ {p ∈ Q/mc(t) : π(p) ∈ X} ∈ F ∗t

Let us claim that [π � Q/mc(t)]F∗t
= κ. We identify π with π � Q/mc(t). First,

assume that f ∈ V [G, g], f : Q/mc(t)→ κ satisfies [f ]F∗t
< [π]F∗t

. Then –

{p ∈ Q/mc(t) : f(p) < π(p)} ∈ F ∗t

This holds in V [G, g]; But we can assume that f ∈ V [G], so this holds in

V [G, gt] as well. Thus, in V [G, gt], qt ∈ jt ({p ∈ Q/mc(t) : f(p) < π(p)}). There-

fore, jt(f)(qt) < jt(π)(qt) = κ, so for some β < κ,

pt ∈ jt ({p ∈ Q/mc(t) : f(p) = β})

Thus, [f ]F∗t
= β < κ. This shows that [π]F∗t

≤ κ. Now, if for some β < κ,

[π]F∗t
= β, then qt ∈ jt ({p ∈ Q/mc(t) : π(p) = β}); This is a contradiction since

jt(π)(qt) = κ > β.

Now, let us demonstrate how independent the ultrafilters F ∗t are from each

other.
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Proposition 1.3.28. Assume that s, t ∈ [Q]
<ω

are C-incompatible and n >

lh(t). Then F ∗s �RK Un(t).

Proof. Assume for contradiction that F ∗s ≤RK Un(t). Define I ⊆ κ++,

I =
(
κ++ \X

)
∪ {φ(r) : r ∈ [Q]

<ω
and r, t are B -compatible }

Denote g � I = g ∩ (κ+ × I × 2). First, note that Un(t) ∈ V [G, g � I]: This

holds, since, for every r ∈ [Q]
<ω

which is C-compatible with t, F ∗r ∈ V [G, g � I]

(because F ∗r ∈ V [G, gr] ⊆ V [G, g � I]).

Now, denote α = φ(s). Since Uα ≤ F ∗s , Uα ≤RK Un(t). There exists

a Rudin-Keisler projection h ∈ V [G, g] witnessing this; By κ+-closure, h ∈

V [G, g � I]. Therefore, Uα ∈ V [G, g � I]. We will claim that this implies that

Hα ∈ V [G, g � I]. This is a contradiction, since, by Remark 1.3.12, it follows

that gα ∈ V [G, g � I], which cannot hold since α /∈ I.

Thus, it suffices to prove the following lemma:

Lemma 1.3.29. Hα ∈ V [G, g � I].

Proof. Denote V0 = V [G, g � I], V1 = V [G, g]. Then V1 is a generic extension

of V0 with a generic set g∗ = g \ (g � I) for Cohen (κ+, X \ I) over V0. So

V1 = V0 [g∗].

Now, Uα ∈ V0 is a normal, κ-complete ultrafilter on κ; Thus, there are a

definable model N0 ' Ult (V0, Uα) and an elementary embedding iUα : V0 → N0.

By the same methods of the previous subsections, the downwards closure of

iUα
′′g∗ in iUα (Cohen (κ+, X \ I)) is generic over N0; Denote N1 = N0 [iUα

′′g∗],

and extend iUα to an elementary embedding i∗Uα : V1 → N1, such that i∗Uα ⊇

iUα . Then, again, by the same methods of the previous subsections, i∗Uα is

the ultrapower embedding of the normal, κ-complete ultrafilter {X ⊆ κ : κ ∈

i∗Uα(X)}; This ultrafilter is exactly Uα, since for every X ∈ V1, X ⊆ κ, it holds

that X ∈ V0 (by κ+-closure). Thus, i∗Uα = i∗α.

Now, G ∗ g′ ∗Hα = i∗α(G). Thus, G ∗ g′ ∗Hα = iUα(G), so G ∗ g′ ∗Hα ∈ V0.

Thus, Hα ∈ V0.
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Remark 1.3.30. It was crucial, in the last proposition, that F ∗t ∈ V [G, g � I].

This might not hold if F ∗t depends on more Cohen function of g. This is the

reason why we developed the embeddings jt and used them to extend Ft.

Now, we can generalize proposition 1.3.28 and give a stronger evidence for

the independence between the ultrafilters in 〈F ∗t : t ∈ [Q]
<ω〉. The following

theorem, together with theorem 1.2.7, finishes the proof of theorem 1.2.5.

Theorem 1.3.31. Assume that s, t are C-incompatible. Then there are no

n > lh(t) and functions f, g such that –

f∗Un(t) = g∗Un(t)-lim〈F ∗s_〈q〉 : q ≥Q mc(s)〉

Proof. First, let us deal with the case that g∗Un(t) is trivial. This case is less

significant, since theorem 1.2.7 promises that g∗Un(t) is non-trivial; But the

majority of work for this case was already done: If g∗Un(t) is trivial, then

for some q ∈ Q/mc(s), f∗Un(t) = F ∗s_〈q〉. So F ∗s_〈q〉 ≤RK Un(t), and this is

impossible by proposition 1.3.28.

We move forward to the general case. Recall that Ur = Uφ(r) for every

r ∈ [Q]
<ω

. It would be simpler to work with the normal ultrafilters Us_〈q〉

instead F ∗s_〈q〉.

Lemma 1.3.32. By modifying f , we can assume, without loss of generality,

that f∗Un(t) = g∗Un(t)-lim〈Us_〈q〉 : q ≥Q mc(s)〉.

Proof. Assume that f∗Un(t) = g∗Un(t)-lim〈F ∗s_〈q〉 : q ≥Q mc(s)〉. Then –

X ∈ f∗Un(t) ⇐⇒ {q ∈ Q/mc(s) : X ∈ F ∗s_〈q〉} ∈ g∗Un(t)

Therefore,

X ∈ (π ◦ f)∗ Un(t) ⇐⇒ {q ∈ Q/mc(s) : X ∈ Uφ(s_〈q〉} ∈ g∗Un(t)

So –

(π ◦ f)∗Un(t) = g∗Un(t)-lim〈Us_〈q〉 : q ≥Q mc(s)〉

So assume that f∗Un(t) = g∗Un(t)-lim〈Us_〈q〉 : q ≥Q mc(s)〉, and g∗Un(t) is

non-trivial. Denote –
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I = (κ++ \X) ∪ {φ(r) : r ∈ [Q]
<ω

and r, t are B -compatible }

J = {φ (s_〈q〉) : q ≥Q mc(s)}

Then I, J are disjoint, J ⊆ X \ I and |J | = κ. Denote V0 = V [G, g � I],

V1 = V [G, g], where g � I = g ∩ (κ+ × I × 2). Then V1 = V0 [g∗], where

g∗ = g ∩ (κ+ × (X \ I)× 2) is generic for Cohen (κ+, X \ I).

Note that for every t ∈ φ−1I, F ∗t ∈ V0, so Un(t) ∈ V0.

Denote U = f∗Un(t), W = g∗Un(t). Then f, g can be identified with func-

tions ∈ κκ, so f, g ∈ V [G]. Thus, U,W ∈ V0. Moreover, W <RK U by the

discreteness of F ∗s_〈q〉. The Rudin-Keisler projection h : ∪U → ∪W belongs to

V [G], and thus to V0.

Now, let NW = Ult(V0,W ), NU = Ult(V0, U). Let iW : V0 → NW , iU : V0 →

NU be the corresponding elementary embeddings. Define k : NW → NU as

follows:

k (iW (f)([Id]W )) = iU (f)([h]U )

this is an elementary embedding, defined in V0.

NU

V0 NW

iU

iW

k

The downwards closure of i′′W g
∗ is generic for iW (Cohen (κ+, κ++ \ I)) over

NW (by the same methods of previous subsections). Denote N2
W = NW [i′′g∗]

(we identified i′′W g
∗ with it’s downwards closure). Let i2W : V [G, g] → N2

W

be an elementary embedding which extends iW . Every element x ∈ N2
W is

of the form i2W (F )([Id]W ) for some F : κ → V [G, g], F ∈ V [G, g]. Thus,

N2
W = Ult(V [G, g] ,W ).
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Similarly, define i2U : V [G, g]→ N2
U , whereN2

U = NU [i′′Ug∗] = Ult(V [G, g] , U).

N2
U

V1 N2
W

i2U

i2W

k2

Note that for p < iW (q), where q ∈ g∗, k(p) < iU (q), and iU (q) ∈ i′′Ug
∗.

Therefore, k′′i′′W g
∗ ⊆ i′′Ug

∗. So we can extend k to k2 : N2
W → N2

U . It can be

easily checked that, in V1, k2 ◦ i2W = i2U .

We note that ([h]U )
V1 = ([h]U )

V0 (here we identify the equivalence class and

the transitive collapse): Both are ordinals in V1 (recall that we identified Q with

κ), and are isomorphic, since for every f such that [f ]U < [h]U in V1, there exists

f∗ ∈ V0 such that, in V1, [f∗]U = [f ]U . Thus, we identify [h]
V0

U = [h]
V1

U = [h]U .

Similarly, ([Id]W )
V0 = ([Id]W )

V1 . Thus, in V1, k2([Id]W ) = [h]U .

The following properties uniquely define k2:

1. k2 : N2
W → N2

U is elementary.

2. k2 ◦ i2W = i2U .

3. k2([Id]W ) = [h]U .

There exists another embedding which satisfies properties 1− 3 above, which is

the ultrapower embedding of Ult(N2
W , F ), where –

F = i2W
(
〈Us_〈q〉 : q ≥Q mc(s)〉

)
([Id]W )

(Recall that W is an ultrafilter on Q/mc(s), so [Id]W ∈ iW (Q), and the last

line makes sense). So k2 is the ultrapower embedding of F .

Lemma 1.3.33. Denote ḡ = i2W (〈gα : α ∈ J〉)
(
i2W (φ) ([Id]W )

)
. Then ḡ ∈ V0.

Proof. Work in V1. Let A,Z ∈ V [G, g′] respectively be the binary tree and the

set of antichains from lemma 1.3.11. By Remark 1.3.12, for every α < κ++, gα

is reconstructible from A and Hα. Note that Hα = iα(G) � (κ, i(κ)), where iα

is the ultrapower embedding of Uα.
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Thus, for every q ∈ Q/mc(s), gφ(s_〈q〉) is reconstructible from A,Z and

is_〈q〉(G). This is true in V [G, g]. Recall that W is an ultrafilter on Q/mc(s).

By elementarity, in N2
W , the function –

ḡ = i2W (〈gα : α ∈ J〉)
(
i2W (φ) ([Id]W )

)
can be reconstructed from i2W (A) and i2F (i2W (G)) = i2U (G).

But A,Z,G ∈ V0. Thus ḡ can be reconstructed from iW (A), iW (Z) and

iU (G), which all belong to V0.

Now, let us finish the proof by deriving a contradiction. Recall, from the

beginning of the proof, the generic set g∗ for Cohen (κ+, X \ I) over V0. Recall

that J ⊆ X \ I. Define, in V0, a dense set in Cohen (κ+, X \ I):

D = {p ∈ Cohen
(
κ+, X \ I

)
: ∃j ∈ {0, 1} ∃ξ < κ+ ḡ (iW (ξ)) = j and ∀β ∈ J p(ξ, β) 6= j}

Let us prove that, indeed, D is dense in Cohen (κ+, X \ I): Take a condition

p : κ+ × (X \ I) → 2 with |p| ≤ κ. There exists ξ < κ+ such that, for every

β ∈ J , (ξ, β) /∈ dom(p). Denote j = ḡ (iW (ξ)). Define:

p̄ = p ∪ {(ξ, β, 1− j) : β ∈ J}

then p̄ ∈ D, p̄ ⊇ p.

Thus, D is dense in Cohen (κ+, X \ I). Then g∗∩D 6= ∅. Take some element

r in the intersection, and let j ∈ {0, 1} and ξ < κ+ be the parameters promised

by r ∈ D. Then for every β ∈ J , g∗(ξ, β) = 1 − j. Thus, for every β ∈ J ,

gβ(ξ) = 1− j.

On the other hand, ḡ (iW (ξ)) = j, so {q ∈ Q/mc(s) : gφ(s_〈q〉)(ξ) = j} ∈W .

Take q in this set, and denote β = φ (s_〈q〉). Then β ∈ J , a contradiction.

1.4 Concluding Remarks

Given pair of different generic Prikry sequences for P~F∗ ,

〈qn : n < ω〉, 〈pn : n < ω〉

we proved that–

〈qn : n < ω〉 ∈ V [〈pn : n < ω〉]
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implies some connection between the ultrafilters 〈F ∗t : t ∈ [Q]
<ω〉; We are not

sure that this is the optimal connection.

Question 1.4.1. Does there exist any connection between the ultrafilters 〈F ∗t : t ∈

[Q]
<ω〉, which promises that, for pair of disjoint Prikry sequences as above,

〈qn : n < ω〉 ∈ V [〈pn : n < ω〉]

As for the quotient forcing, by combining theorem 1.2.5 and proposition

1.1.13, it follows that the quotient forcing P~F∗/H, described in the last section,

is not homogeneous:

Corollary 1.4.2. It’s consistent from κ+-supercompactness of κ that for every

separative, κ-distributive forcing notion Q with |Q| = κ, there exists a choice of

measures ~F ∗, such that for every H ⊆ Q generic over V , the quotient forcing

P~F∗/H is not homogeneous.

Question 1.4.3. Is it consistent, from some large cardinal assumption, that

for every separative, κ-distributive forcing notion Q with |Q| = κ, there exists a

choice of measures ~F ∗ such that for every H ⊆ Q generic over V , the quotient

forcing P~F∗/H is homogeneous?
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Chapter 2

Prikry Forcing With One Ultrafilter

2.1 Definitions and Basic Properties

Let κ be a κ-compact cardinal. Consider a separative, κ-distributive forcing

notion 〈Q,<Q〉, with |Q| = κ. Let us assume that h : Q → κ is some function

which satisfy –

∀α < κ , |{q ∈ Q : h(q) = α}| < κ

Remark 2.1.1. For example, assuming that Q ⊆ Vκ, we may always take

h(q) = rank(q). Alternatively, identify Q with κ and take h to be the identity

map.

Let F be the κ-complete filter generated by the dense-open subsets of Q –

F = {E ⊆ Q : D ⊆ E for some dense open subset D of Q}

By κ-compactness of κ, there is a κ-complete ultrafilter F ∗ extending F . Let

jF∗ : V → Ult(V, F ∗) be the elementary embedding of V in it’s ultrapower.

Assume that π : Q→ κ satisfies [π]F∗ = κ (where [f ]F∗ is the equivalence class

of the function f : Q→ V , under the natural equivalence relation derived from

F ∗). Let U ≤RK F ∗ be the non-trivial, normal, κ-complete ultrafilter on κ,

derived from the Rudin-Keisler projection π, i.e. –

∀X ⊆ κ , X ∈ U ⇐⇒ π−1(X) ∈ F ∗

In this section, we will develop a Prikry-type forcing PF∗ , which depends on the

choice of F ∗, the function h and the Rudin-Keisler projection π.

Definition 2.1.2. Let 〈PF∗ ,≤,≤∗〉, consist of elements of the form 〈p1, . . . , pn, A〉,

where –
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1. pi ∈ Q

2. A ∈ F ∗

3. For every 1 < i ≤ n, π (pi) > h(pi−1)

We say that 〈p1, . . . , pn, A〉 ≥ 〈q1, . . . , qm, B〉, namely 〈p1, . . . , pn, A〉 extends

〈q1, . . . , qm, B〉, if and only if –

1. n ≥ m

2. ∀1 ≤ i ≤ m qi = pi

3. ∀m < i ≤ n pi ∈ B

4. A ⊆ B

If n = m, we say that 〈p1, . . . , pn, A〉 is a Direct Extension of 〈q1, . . . , qm, B〉,

and denote it by 〈p1, . . . , pn, A〉 ≥∗ 〈q1, . . . , qm, B〉.

If Q = 〈κ,∈〉, h is the identity, and F ∗ is some normal ultrafilter on κ, then

PF∗ is the standard Prikry forcing.

Remark 2.1.3. 1. {p ∈ Q : π(p) ≤ h(p)} ∈ F ∗.

2. For every q ∈ Q, {p ∈ Q : π(p) > h(q)} ∈ F ∗. In particular, PF∗ is

separative.

Proof. 1. Otherwise, we would have had [h]F∗ < κ, so, for some α < κ,

{q ∈ Q : h(q) = α} ∈ F ∗, and in particular, |{q ∈ Q : h(q) = α}| = κ.

2. given an element q ∈ Q, {α < κ : α > h(q)} ∈ U , and thus π−1{α <

κ : α > h(q)} = {p ∈ Q : π(p) > h(q)} ∈ F ∗.

We would like to prove some Prikry-type properties of PF∗ . Given a generic

G ⊆ PF∗ , we may define a corresponding ω-sequence 〈pi : i < ω〉 ∈ V [G] of

elements of Q, derived from –⋃
{~p : ∃A ∈ F ∗, 〈~p,A〉 ∈ G}

45



By a simple density argument, the sequence 〈h(pi) : i < ω〉 ∈ V [G] is cofinal in

κ, so in V [G], κ changes it’s cofinality to ω. Moreover, PF∗ preserves cardinals:

For cardinals above κ this easily follows from κ+ − c.c.. For κ and below, this

will follow, by a standard argument, from the Prikry condition (Claim 2.1.8

below). Towards the proof of the Prikry condition, let us show that F ∗ admits

some kind of diagonal intersection:

Lemma 2.1.4. Let A ∈ F ∗, and assume that for every p ∈ A, Ap ∈ F ∗. Let –

∆∗
p∈A

Ap = {x ∈ A : ∀p ∈ A h(p) < π(x)→ x ∈ Ap}

Then ∆∗
p∈A

Ap ∈ F ∗.

Proof. For every γ < κ, let –

Bγ =


⋂

h(p)=γ

Ap ∃p ∈ Q h(p) = γ

Q else

By the κ-completeness of F ∗, Bγ ∈ F ∗. Now, we may easily verify that –

∆∗
p∈A

Ap ⊇ {x ∈ Q : ∀γ < κ γ < π(x)→ x ∈ Bγ} ∩A

So it suffices to prove that {x ∈ Q : ∀γ < κ γ < π(x) → x ∈ Bγ} ∈ F ∗. We

note that by Los’s theorem, it suffices to prove the following property in the

ultrapower Ult(V, F ∗):

∀γ < κ [Id]F∗ ∈ j(Bγ)

Where j : V → Ult(V, F ∗) is the corresponding elementary embedding. In-

deed, this property trivially holds since Bγ ∈ F ∗.

Notation. For A ⊆ Q and n ∈ ω, denote by JAKn the set of all finite sequences

of the form 〈q1, . . . , qn〉 ∈ An, where –

1. ∀i, qi ∈ Q

2. ∀1 < i ≤ n , π(qi) > h(qi−1)

Set JAK0 = {〈〉} (the empty sequence). Denote JAK<ω =
⋃
n<ω

JAKn.

Remark 2.1.5. We can generalize our form of diagonal intersection for sets

indexed by finite sequences of elements of Q. Assume that for every ~a ∈ JQK<ω

there exists a set A~a ∈ F ∗. Let –
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∆∗
~a∈JQK<ω

A~a = {x ∈ A〈〉 : ∀~a = 〈a1, . . . , an〉 ∈ JQK<ω h(an) < π(x)→ x ∈ A~a}

Then ∆∗
~a∈JQK<ω

A~a ∈ F ∗.

Proof. For every p ∈ A, denote Sp = {~a = 〈a1, . . . , an〉 ∈ S : an = p}, and let–

Hp =
⋂

~a∈Sp
A~a

Note that |Sp| < κ, since |{a ∈ Q : h(a) ≤ π(p)}| < κ, so there are < κ options

for an−1; For each one of them, there are < κ options for an−2, and so on.

Therefore, by κ-completeness, Hp ∈ F ∗. Now, set –

H = ∆∗
p∈Q

Hp = {x ∈ A : ∀p ∈ A h(p) < π(x)→ x ∈ Hp}

Then H ∈ F ∗, and H ⊆ ∆∗
~a∈JQK<ω

A~a.

Recall that, given a measure F on κ and 1 < n < ω,

Fn = {A ⊆ κn : {α1 < κ : {α2 < κ : . . . {αn < κ : 〈α1, . . . , αn〉 ∈ A} ∈ F . . .} ∈ F} ∈ F}

This is a κ-complete ultrafilter on κn. Fn, where F is an ultrafilter on Q, is

defined similarly. The following property will be useful:

Lemma 2.1.6. For every n < ω and Z ∈ F ∗n, there exists A ∈ F ∗ such that

JAKn ⊆ Z.

Proof. Z ∈ F ∗n means that –

A〈〉 = {x1 ∈ Q : {x2 ∈ Q : . . . {xn ∈ Q : 〈x1, . . . , xn〉 ∈ Z} ∈ F ∗ . . .} ∈ F ∗} ∈ F ∗

We define sets A~x recursively: Assume that A〈x1,...,xk〉 was defined for k < n−1.

For every xk+1 ∈ A〈x1,...,xk〉, set –

A〈x1,...xk,xk+1〉 = {xk+2 : {xk+3 . . . {xn : 〈x1, . . . , xn〉 ∈ Z} ∈ F ∗ . . .} ∈ F ∗} ∈ F ∗

For every ~a ∈ JQK<ω such that A~a has not been defined, take A~a = Q ∈ F ∗.

Now just take A = ∆∗
~a∈JQK<ω

A~a.

We will use the following generalization of Rowbottom’s theorem:

Lemma 2.1.7. (Rowbottom’s theorem for F ∗)

Assume f : JQK<ω → α is a partition of JQK<ω, for some α < κ. Then there

exists H ∈ F ∗ such that for every n ∈ N, f is constant on JHKn.
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Proof. It suffices to prove that for every n ∈ N, for every partition f , there

exists Hn ∈ F ∗ such that f is constant on JHnK
n

(and then set H =
⋂
n∈N

Hn).

We prove this by induction on n. The case n = 1 follows from κ-completeness.

For n + 1, given a partition f : JQK<ω → α, define, for every sequence ~a =

〈a1, . . . , an〉 ∈ JQKn, a function f~a : Q→ α, as follows –

f~a(q) =

{
f(~a, q) if π(q) > h(an)
0 otherwise

By the κ-completeness of F ∗, for every ~a ∈ JQKn, there exist an ordinal γ~a ∈ κ

and a set H~a ∈ F ∗ such that f~a gets the constant value γ~a on H~a. Now, apply

the induction hypothesis on the function ~a 7→ γ~a: There is γ < κ and a large

set Z ∈ F ∗ such that for all ~a ∈ JZKn, γ~a = γ. Let –

H = Z ∩ ∆∗
~a∈JAKn

H~a

We claim that f gets the constant value γ on JHKn+1
.

Indeed, Let ~a = 〈a1, . . . , an, an+1〉 ∈ JHKn+1
. We note that, by the definition

of the diagonal intersection, an+1 ∈ H〈a1,...,an〉. Therefore:

f(~a) = f〈a1,...,an〉(an+1) = γ〈a1,...,an〉 = γ

(the last equation follows from the fact that 〈a1, . . . , an〉 ∈ JZKn).

The next lemma follows in a standard fashion:

Lemma 2.1.8. (The Prikry Condition) Let σ be a statement in the forcing

language of PF∗ . Let 〈p1, . . . , pn, B〉 ∈ PF∗ . Then there exists A ∈ F ∗, A ⊆ B

such that 〈p1, . . . , pn, A〉 ‖ σ (i.e. 〈p1, . . . , pn, A〉 
 σ or 〈p1, . . . , pn, A〉 
 ¬σ).

Lemma 2.1.9. Assume 〈pn : n < ω〉 is a Prikry sequence for PF∗ , generated

from some generic G ⊆ PF∗ . Let E ∈ F ∗. Then there exists n0 ∈ ω such that

for every n > n0, pn ∈ E.

Proof. Let D = {〈a0, . . . , an, A〉 ∈ PF∗ : A ⊆ E}. D is clearly dense in PF∗ .

Therefore, there exists some n0 < ω and some A ∈ F ∗, A ⊆ E, such that –

〈p0, . . . , pn0
, A〉 ∈ G

Therefore, for every n > n0, pn ∈ E.

Remark 2.1.10. Assume that 〈pn : n < ω〉 is a generic Prikry sequence for

PF∗ , with a corresponding generic set G over V . Then V [G] = V [〈pn : n < ω〉].
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Proof. It suffices to prove that G ∈ V [〈pn : n < ω〉]. Let us argue that –

G = {〈p0, . . . , pn, A〉 : n < ω,A ∈ F ∗ and for every m > n, pm ∈ A}

The inclusion ⊆ is clear; Now, given 〈p0, . . . , pn, A〉 such that for every m > n,

pm ∈ A, it follows that 〈p0, . . . , pn, A〉 is compatible with every element of G,

and thus, belongs to G.

We will use the following observation as well:

Remark 2.1.11. Suppose that 〈pn : n < ω〉 is a Prikry sequence for PF∗ . Then,

for every m < ω, 〈pn : n > m〉 is a Prikry sequence for PF∗ as well.

Proof. Denote t = 〈p0 . . . , pm〉. Let G be the generic set corresponding to

〈pn : n < ω〉. Define –

G′ = {〈pm+1, . . . , pn, A〉 : m < n < ω and for every k > n, pk ∈ A}

We claim that G′ is PF∗ -generic over V . It suffices to prove that G intersects

every dense open set. Given D′ ⊆ PF∗ dense and open, denote–

D = {t_〈q0, . . . , qn, A〉 : 〈q0, . . . , qn, A〉 ∈ D′ and π(q0) > h(pm)}

Then D is dense above 〈t, Q〉 ∈ G. Thus, G contains an element of the

from t_〈q0, . . . , qn, A〉 where 〈q0, . . . , qn, A〉 ∈ D′. In particular, 〈q0, . . . , qn〉 =

〈pm+1, . . . , pn+m+1〉. Also, for every k > n + m + 1, pk ∈ A. Therefore,

〈q0, . . . , qn, A〉 ∈ G′ ∩D′.

Lemma 2.1.12. Assume that F ∗ is Rudin-Keisler equivalent to a normal ul-

trafilter on κ. Then every generic extension of V , obtained by forcing with PF∗ ,

is a generic extension of V obtained by forcing with the standard Prikry forcing.

Proof. Indeed, the function h : Q → κ defines a κ-complete, non-principal ul-

trafilter –

W = h∗ (F ∗) = {X ⊆ κ : h−1X ∈ F ∗}

Therefore W ≤RK F ∗, and by minimality of F ∗ in the Rudin-Keisler order,

W ≡RK F ∗, and h : Q → κ is injective on a large set A ∈ F ∗. We can assume

that W is normal (if not, take an injection f : κ→ κ such that f∗W is a normal

ultrafilter, and replace W with f∗W and h with f ◦ h for the rest of the proof).
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Let 〈pn : n < ω〉 be a generic Prikry sequence for PF∗ . By lemma 2.1.9,

we can assume without loss of generality that pn ∈ A for every n < ω. Thus,

V [〈pn : n < ω〉] = V [〈h(pn) : n < ω〉]. 〈h(pn) : n < ω〉 is an increasing sequence

(this is true from some index, and we may cut the initial segment). For every

C ∈ W , there exists n0 < ω such that, for every n ≥ n0, h(pn) ∈ C (this

follows by lemma 2.1.9, again). Therefore, by the Mathias criterion (see [2],

1.12), 〈h(pn) : n < ω〉 is a Prikry sequence for PW , the standard Prikry forcing

with the normal ultrafilter W .

2.2 Prikry Sequences Inside Generic Extensions

Fix a measure F on κ. A function f : κn → κ is called a projection of Fn onto

F , if it’s a Rudin-Keisler projection, i.e.,

X ∈ F ⇐⇒ f−1X ∈ Fn

Given 1 ≤ i ≤ n, let ρi : κ
n → κ be the projection on the i-th coordinate:

ρi(x1, . . . xn) = xi. Clearly, every such a projection is a Rudin-Keisler projection

of Fn onto F , since,

A ∈ F ⇐⇒ {x1 ∈ κ : {x2 ∈ κ : . . . {xn ∈ κ : xi ∈ A} ∈ F . . .} ∈ F

Definition 2.2.1. A projection f : κn → κ of Fn onto F is called non-trivial,

if for every 1 ≤ i ≤ n, {~x ∈ κn : f(~x) 6= ρi(~x)} ∈ Fn.

Every projection f : κ → κ of F onto itself is trivial, i.e., {x ∈ κ : f(x) =

x} ∈ F . Therefore, the last definition makes sense for n > 1.

Let Q,F ∗, PF∗ be as in the last section.

Theorem 2.2.2. Assume 〈pn : n < ω〉 , 〈qn : n < ω〉 are two Prikry sequences

for PF∗ , with a finite intersection, such that –

〈qn : n < ω〉 ∈ V [〈pn : n < ω〉]

Then there exists n > 1 and a non-trivial projection of F ∗n onto F ∗.

Proof. By cutting a large enough initial segment, we may assume that the se-

quences 〈pn : n < ω〉 , 〈qn : n < ω〉 are disjoint. In V , assume σ
∼

is a PF∗ -name

for 〈qn : n < ω〉 ∈ V [〈pn : n < ω〉]. We will use the following lemma:
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Lemma 2.2.3. There are m,n ∈ ω, ~r ∈ JQK<ω and A ∈ F ∗, which satisfy the

following property: For every ~ν = 〈ν1, . . . νn〉 ∈ JAKn, there exists p~ν ∈ Q and

B~ν ∈ F ∗, such that –

1. 〈~r, ~ν,B~ν〉 ∈ PF∗ , and 〈~r, ~ν,B~ν〉 
 σ∼(m̌) = p̌~ν

2. For every B ∈ F ∗, B ⊆ A, { p~ν : ~ν ∈ JBKn } ∈ F ∗

Proof. Assume otherwise. First, take 〈~r,X〉 ∈ PF∗ , which forces that σ
∼

is a

generic Prikry sequence for PF∗ , disjoint from 〈pn : n < ω〉 (which could be

expressed as the sequence generated from the canonical name for the generic

set). In this proof, we work in PF∗ above the condition 〈~r,X〉. For notational

simplicity, let us assume that 〈~r,X〉 = 〈〈〉, Q〉 is the weakest condition. We

will build an increasing sequence 〈ni : i < ω〉, and, for every i ≤ ω, large sets

Bi ∈ F ∗, Ei ∈ F ∗, which satisfy the following property: For every ~ν ∈ JBiK
ni ,

there exists pi(~ν) ∈ Q and a set Bi(~ν) ∈ F ∗, such that:

1. 〈~ν,Bi(~ν)〉 
 σ
∼

(̌i) =

̂

pi(~ν)

2. { pi(~ν) : ~ν ∈ JBiK
ni } ∩ Ei = ∅

We build those elements in the following way: On stage i, define a function

fi : JQK<ω → 2 as follows: For every ~ν ∈ JQK<ω,

fi(~ν) =

1 ∃pi(~ν) ∈ Q,Bi(~ν) ∈ F ∗, s.t. 〈~ν,Bi(~ν)〉 
 σ
∼

(̌i) =

̂

pi(~ν)

0 otherwise

Let Hi ∈ F ∗ be homogeneous for fi. We use the following claim:

Claim. For every n0 < ω, there exists some n ≥ n0, such that fi �JHiKn= 1.

Proof. Let ~ν ∈ JHiK
n0 . Take pi(~ν) ∈ Q such that for some ~ν′, H ′ ⊆ Hi,

〈~ν,Hi〉 ≤ 〈~ν′, H ′〉 
 σ∼(̌i) =

̂

pi(~ν)

Let n = lh(~ν′) be the length of ~ν′. Then fi(~ν
′) = 1. By the homogeneity of Hi,

we get fi �JHiKn= 1.

Applying the claim, for every i, there exists some ni > sup{nj : j < i} such

that, for every ~ν ∈ JHiK
ni , there exists pi(~ν) ∈ Q and a large set Bi(~ν) ∈ F ∗

which satisfy 〈~ν,Bi(~ν)〉 
 σ
∼

(̌i) =

̂

pi(~ν). By our assumption, there are some

Bi ⊆ Hi, Bi ∈ F ∗ such that –
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{ pi(~ν) : ~ν ∈ JBiK
ni } /∈ F ∗

So, we may assume that this set is disjoint from some Ei ∈ F ∗. This concludes

stage i in the construction. Now, take –

B =
⋂
i<ω

Bi , E =
⋂
i<ω

Ei

Let us argue that –

〈〈〉, B〉 
 ∀n < ω̌ ∃i ≥ n , σ
∼

(i) /∈ Ě (∗)

(∗) finishes the proof of the lemma, since it contradicts claim 2.1.9. To prove

(∗), it suffices to show that the following sets are dense above 〈〈〉, B〉:

Dn = { p ∈ PF∗ : p 
 ∃i ≥ ň , σ
∼

(i) /∈ Ě}

Indeed, fix n < ω. Assume 〈~ν,B′〉 ≥ 〈〈〉, B〉. By extending ~ν if necessary, there

exists some i ≥ n such that ~ν ∈ JBiK
ni . Therefore:

〈~ν,B′ ∩Bi(~ν)〉 
 σ
∼

(̌i) =

̂

pi(~ν)

(as an extension of 〈~ν,Bi(~ν)〉). But pi(~ν) /∈ E by our construction. So –

〈~ν,B′〉 ≤∗ 〈~ν,B′ ∩Bi(~ν)〉 
 σ
∼

(̌i) /∈ Ě

Now, fix n,m,A,~r as in the lemma, and denote by f : JAKn → Q the function

~ν 7→ p~ν . We identify f with one of it’s arbitrary extensions to the domain Qn.

We note that condition 2 of lemma 2.2.3 implies that n > 0. Let us argue that

f is a projection of F ∗n onto F ∗:

Claim 2.2.4. Y ∈ F ∗ ⇐⇒ {~ν : f(~ν) ∈ Y } ∈ F ∗n.

Proof. First, let us assume that for some Y ∈ F ∗, {~ν ∈ JQKn : f(~ν) /∈ Y } ∈ F ∗n.

Applying lemma 2.1.6, let X ∈ F ∗ be chosen such that for every ~ν ∈ JXKn,

f(~ν) /∈ Y . By intersecting, assume X ⊆ A. By condition 2 of lemma 2.2.3, it

follows that Z = {f(~ν) : ~ν ∈ JXKn} ∈ F ∗, therefore Z ∩Y 6= ∅, a contradiction.

For the other direction, assume that {~ν : f(~ν) ∈ Y } ∈ F ∗n. Take Z ⊆ A

such that f ′′JZKn ⊆ Y . By condition 2 of lemma 2.2.3, {f(~ν) : ~ν ∈ JZKn} ∈ F ∗.

Therefore Y ∈ F ∗.

The non-triviality of f follows from the following claim:
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Claim 2.2.5. For every i ≤ n, {~ν ∈ Qn : f(~ν) = νi } /∈ F ∗n.

Proof. Assume otherwise. So {~ν ∈ Qn : f(~ν) = νi } ∈ F ∗n. Therefore, by

Remark 2.1.6, there exists a set C ∈ F ∗ such that, for every ~ν ∈ JCKn, f(~ν) = νi.

Assume that –

C ⊆
(

∆∗
~ν∈JAK<ω

B~ν

)
∩A

(else, intersect). Here, if B~ν has not been defined, take B~ν = Q. Let us claim

that –

D = {〈~r, ~ν, S〉 ∈ PF∗ : lh(~ν) ≥ n and 〈~r, ~ν, S〉 
 σ
∼

(m̌) = ν̌i}

is dense above 〈~r, C〉. Once we prove this, we are done: Just take G ⊆ PF∗

such that 〈~r, C〉 ∈ G. Choose 〈~r, ~ν, S〉 ∈ D ∩ G, where ~ν = 〈ν1, . . . , νk〉, for

some k < ω, k ≥ n. So 〈~r, ~ν, S〉 
 σ
∼

(m̌) = ν̌i, contradicting the disjointness

of σ
∼

and the Prikry sequence of G (recall that this disjointness was forced by

〈~r,X〉, where C ⊆ X. We assumed that X = Q; without this assumption, in

the definition of C, we should intersect with X).

Therefore, it suffices to prove the density of D above 〈~r, C〉. Let 〈~r, ~ν, S〉 ∈

PF∗ extend 〈~r, C〉, and assume that lh(~ν) ≥ n (else, extend it). Now, since –

〈~r, ~ν, S ∩B〈ν1,...,νn〉〉 ≥ 〈~r, ν1, . . . , νn, B〈ν1,...,νn〉〉 
 σ∼(m̌) = p̌〈ν1,...,νn〉

we get 〈~r, ~ν, S〉 ≤∗ 〈~r, ~ν, S ∩B〈ν1,...,νn〉〉 
 σ∼(m̌) = p̌〈ν1,...,νn〉 = ν̌i.

This shows that f : Qn → Q is, indeed, a non-trivial projection. Clearly

n 6= 1 (else, f was trivial).

Lemma 2.2.6. Assume that F ∗ is Rudin-Keisler equivalent to a normal ultra-

filter on κ. Then the assumptions of theorem 2.2.2 cannot hold. More precisely,

if ~p = 〈pn : n < ω〉, ~q = 〈qn : n < ω〉 are two Prikry sequences for PF∗ , such that

〈qn : n < ω〉 ∈ V [〈pn : n < ω〉], then ~p, ~q have infinitely many common elements.

This lemma follows from theorem 2.2.2 and from the following proposition:

Proposition 2.2.7. Let U be a normal ultrafilter on κ, and 1 ≤ n < ω. Then

any projection f : κn → κ of Un onto U is trivial.
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Proof. Assume the contrary. Let n < ω be the first such that Un is projected

on U via a non-trivial projection f : κn → κ. n > 1 since any projection of U

onto itself is trivial. We prove that {~x ∈ κn : f(~x) = ρn(~x)} ∈ Un. This follows

from the following two claims:

Claim. {~x : f(~x) < ρn(~x)} /∈ Un

Proof. Otherwise, for some set A ∈ U , and for every ~x = 〈x1, . . . , xn〉 ∈ [A]
n
,

f(~x) < xn (this follows from lemma 2.1.6; here [A]
n

is the set of increasing

n-sequences of elements of A).

Fix 〈x1 . . . , xn−1〉 ∈ [A]
n−1

(note that n−1 ≥ 1). Then {x : f(x1, . . . , xn−1, x) <

x} ∈ U . By normality, for some α(x1, . . . , xn−1) < κ, and A〈x1,...,xn−1〉 ∈ U , for

every x ∈ A〈x1,...,xn−1〉,

f(x1, . . . , xn−1, x) = α(x1, . . . , xn−1)

Thus, the function α : [A]
n−1 → κ is a projection of Un−1 onto U : Indeed,

given B ∈ U , there exists C ∈ U such that [C]
n ⊆ f−1B. We can assume that

C ⊆ A ∩ 4
~x∈[A]n−1

A~x (else, intersect). So for every ~x = 〈x1, . . . , xn〉 ∈ [C]
n
,

xn ∈ A〈x1,...,xn−1〉, so f(x1, . . . , xn) = α(x1, . . . , xn−1). Thus, α−1B ⊇ [C]
n−1

.

So α−1B ∈ Un−1.

The projection α is non-trivial (else, f was trivial), contradicting the mini-

mality of n.

Claim. {~x : f(~x) > ρn(~x)} /∈ Un.

Proof. Assume otherwise. Fix A ∈ U such that, for every ~x = 〈x1, . . . , xn〉 ∈

[A]
n
, f(~x) > xn. Since f is a projection, and [A]

n ∈ Un, f ′′ [A]
n ∈ U .

Define a function g from some subset of κ to κ as follows: For every y < κ,

if there exists ~x = 〈x1, . . . , xn〉 ∈ [A]
n

such that f(~x) = y, let –

g(y) = min{x ∈ A : ∃~t ∈ [A ∩ x]
n−1

f(~t, x) = y}

Note that dom(g) ⊇ f ′′ [A]
n
, so dom(g) ∈ U . Also, for every y ∈ f ′′ [A]

n
, there

exists ~x = 〈x1, . . . , xn〉 ∈ [A]
n

such that f(~x) = y. Therefore, xn < y. Thus,

g(y) ≤ xn < y. So, on a set in U , g is regressive. By the normality of U ,

there exists α < κ such that, for some Y ∈ U , g′′Y = {α}. In particular, for
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every y ∈ Y , there exists ~x ∈ [A ∩ (α+ 1)]
n

such that f(~x) = y. In particular,

f ′′ [A ∩ (α+ 1)]
n ⊇ Y . But |[A ∩ (α+ 1)]

n| < κ, so |Y | < κ, a contradiction.

Let us recall our general context: 〈Q,<Q〉 is a κ-distributive forcing notion,

with |Q| = κ. We consider the forcing PF∗ , where F ∗ extends the filter of dense

open subsets of Q. Assume that 〈pn : n < ω〉 is a Prikry sequence for PF∗ .

Our next observation is that two disjoint Prikry sequences in V [〈pn : n < ω〉],

which are both disjoint from 〈pn : n < ω〉, induce two different non-trivial pro-

jections. Let us define the exact way in which two projections differ:

Definition 2.2.8. Suppose 1 ≤ n < ω. Two projections f : κn → κ, g : κn → κ

of F ∗n onto F ∗ are called equivalent, if {~x ∈ Qn : f(~x) = g(~x)} ∈ F ∗n (i.e., f, g

represent the same element in the iterated ultrapower construction of F ∗n).

Proposition 2.2.9. Assume that 〈an : n < ω〉, 〈bn : n < ω〉 are two disjoint

Prikry sequences in V [〈pn : n < ω〉], which are disjoint from 〈pn : n < ω〉. Then,

for some n < ω, there are two non-equivalent, non-trivial projections of F ∗n

onto F ∗.

Proof. Denote by G ⊆ PF∗ the generic set corresponding to 〈pn : n < ω〉.

Assume that σ
∼1
, σ
∼2

are PF∗ -names for 〈an : n < ω〉, 〈bn : n < ω〉. Choose

〈~r,X〉 ∈ G which forces that σ
∼1
, σ
∼2

are PF∗ -names for disjoint Prikry sequences,

both disjoint from the sequence 〈pn : n < ω〉.

Apply lemma 2.2.3 and get parameters n1,m1, A1 ⊆ X and n2,m2, A2 ⊆ X,

such that, for every i ∈ {1, 2}, the following property holds:

For every ~ν = 〈ν1, . . . νni〉 ∈ JAiK
ni , there exists pi~ν ∈ Q and Bi~ν ∈ F ∗, such

that –

1. 〈~r, ~ν,Bi~ν〉 ∈ PF∗ , and 〈~r, ~ν,Bi~ν〉 
 σ∼i
(m̌i) = p̌i~ν

2. For every B ∈ F ∗, B ⊆ Ai, { pi~ν : ~ν ∈ JBKni } ∈ F ∗

Assume that n1 ≤ n2. Denote, for i ∈ {1, 2}, fi(~ν) = pi~ν . Extend f1, f2

arbitrarily to domains Qn1 , Qn2 , respectively. Let ρn2,n1
: Qn2 → Qn1 be the

function ρn2,n1
(ν1 . . . , νn1

, . . . , νn2
) = (ν1 . . . , νn1

) (if n1 = n2, ρn2,n1
is the
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identity). During the following proof, we denote ρ = ρn2,n1
for notational sim-

plicity. Let us claim that f2, f1◦ρ are two non-equivalent, non-trivial projections

of F ∗n2 onto F ∗.

The non-triviality is similar to claim 2.2.5. Let us prove that f2, f1 ◦ ρ are

non-equivalent. Assume otherwise. Apply lemma 2.1.6 to find some C ∈ F ∗,

such that for every ~ν ∈ JCKn2 , f1(ν1, . . . , νn1
) = f2(ν1, . . . , νn2

). By intersecting,

assume that–

C ⊆
(

∆∗
~ν∈JA1K<ω

B1
~ν

)
∩
(

∆∗
~ν∈JA2K<ω

B2
~ν

)
∩A1 ∩A2 ∩X

Now, let us claim that the following set is dense above 〈~r, C〉:

D = {〈~r, ~ν, S〉 ∈ PF∗ : lh(~ν) > n2 and 〈~r, ~ν, S〉 
 σ
∼1

(m̌1) = σ
∼2

(m̌2)}

This will finish the proof: Just take a generic H ⊆ PF∗ such that 〈~r, C〉 ∈ H.

In particular, 〈~r,X〉 ∈ H, and it forces that σ
∼1

and σ
∼2

are disjoint. This

contradicts the density of D. Therefore, it suffices to prove that D is dense.

Indeed, take some 〈~r, ~ν, S〉 above 〈~r, C〉. Assume that lh(~ν) > n2 (else, extend).

Then –

〈~r, ~ν, S ∩B1
〈ν1,...,νn1 〉

〉 ≥ 〈~r, ν1, . . . , νn1 , B
1
〈ν1,...,νn1 〉

〉 
 σ
∼1

(m̌1) =

̂

f1(ν1, . . . , νn1
)

and –

〈~r, ~ν, S ∩B2
〈ν1,...,νn2

〉〉 ≥ 〈~r, ν1, . . . , νn2
, B2
〈ν1,...,νn2

〉〉 
 σ∼2
(m̌2) =

̂

f2(ν1, . . . , νn2
)

Therefore, 〈~r, ~ν, S ∩B1
〈ν1,...,νn1

〉 ∩B
2
〈ν1,...,νn2

〉〉 
 σ∼1
(m̌1) = σ

∼2
(m̌2).

It’s straightforward to generalize proposition 2.2.9 to finitely many pairwise

disjoint Prikry sequences in V [〈pn : n < ω〉]; A generalization to infinitely many

pairwise disjoint Prikry sequences could be done in the following way:

Proposition 2.2.10. Assume that 〈pn : n < ω〉 is a Prikry sequence for PF∗ .

Assume that 〈〈pnξ : n < ω〉 : ξ < κ〉 is a set of pairwise disjoint Prikry sequences

for PF∗ in V [〈pn : n < ω〉], which are all disjoint from 〈pn : n < ω〉. Then for

some n < ω, there are κ-many non-equivalent, non-trivial projections of F ∗n

onto F ∗.
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Proof. Denote by G the Prikry-generic set corresponding to 〈pn : n < ω〉. Let

σ
∼

be a PF∗ -name for 〈〈pnξ : n < ω〉 : ξ < κ〉. Assume that 〈~r,X〉 ∈ G forces that

the elements of σ
∼

are pairwise disjoint Prikry sequences for PF∗ , such that each

one is disjoint from the Prikry sequence corresponding to the canonical name

of the generic set. We slightly abuse the notation and denote σ
∼

(ξ̌) by σ
∼ξ

.

Apply lemma 2.2.3, and get parameters nξ,mξ, Aξ ⊆ X such that, for every

ξ < κ, the following property holds: For every ~ν = 〈ν1, . . . νnξ〉 ∈ JAξK
nξ , there

exist pξ~ν ∈ Q and Bξ~ν ∈ F ∗, such that –

1. 〈~r, ~ν,Bξ~ν〉 ∈ PF∗ , and 〈~r, ~ν,Bξ~ν〉 
 σ∼ξ
(m̌ξ) = p̌ξ~ν

2. For every B ∈ F ∗, B ⊆ Aξ, { pξ~ν : ~ν ∈ JBKnξ } ∈ F ∗

Let I ⊆ κ be a set cardinality κ, such that for some n < ω, and for every ξ ∈ I,

nξ = n. For simplicity, let us assume that I = κ for the rest of the proof.

Assume that for every ξ < κ, fξ : Qn → Q is a function such that, for every

~ν ∈ JAξKn, fξ(~ν) = pξ~ν . As in claim 2.2.5, each fξ is a non-trivial projection of

F ∗n onto F ∗.

We now prove that the projections fξ are pairwise non-equivalent. Let ξ1 6=

ξ2. It suffices to prove that {~ν ∈ Qn : fξ1(~ν) = fξ2(~ν)} /∈ F ∗n. Assume the

opposite, and get C ∈ F ∗ such that for every ~ν ∈ JCKn, fξ1(~ν) = fξ2(~ν). By

intersecting, assume that –

C ⊆

(
∆∗

~ν∈JAξ1K
<ω

Bξ1~ν

)
∩

(
∆∗

~ν∈JAξ2K
<ω

Bξ2~ν

)
∩Aξ1 ∩Aξ2 ∩X

Then, as before, the following set is dense above 〈~r, C〉:

D = {〈~r, ~ν, S〉 ∈ PF∗ : lh(~ν) > n and 〈~r, ~ν, S〉 
 σ
∼ξ1

(m̌ξ1) = σ
∼ξ2

(m̌ξ2)}

And this is a contradiction, since 〈~r, C〉 extends 〈~r,X〉, which forces that the

sequences σ
∼ξ

are disjoint.

Remark 2.2.11. By [3], it’s consistent from large cardinals that for Q = 〈κ,∈〉,

there exists a κ-complete ultrafilter F ∗, such that the forcing PF∗ has a generic

extension V [〈pn : n < ω〉], which carries a sequence–

〈〈pnξ : n < ω〉 : ξ < κ〉

of pairwise disjoint Prikry sequences for PF∗ , which are also disjoint from

〈pn : n < ω〉.
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2.3 The Quotient Forcing

Assume that G is PF∗ -generic over V , with a corresponding Prikry sequence

〈pn : n < ω〉. Assume that H ∈ V [〈pn : n < ω〉] is RO(Q)-generic over V . Let

us consider the quotient forcing PF∗/H (more details about the existence and

definition of the quotient forcing are included in the preliminaries).

Definition 2.3.1. We say that two elements 〈a1, . . . , an, A〉, 〈b1, . . . , bm, B〉 of

PF∗/H can be balanced if they have extensions (in PF∗/H), 〈a1, . . . , an′ , A〉

and 〈b1 . . . , bm′ , B〉, such that h(an′) = h(bm′).

Definition 2.3.2. We say that a forcing notion 〈P,<P 〉 is cone-homogeneous,

if for every a, b ∈ P there are extensions a′ >P a, b′ >P b such that P/a′ and

P/b′ are isomorphic.

Lemma 2.3.3. Assume that the quotient forcing PF∗/H is cone-homogeneous.

Suppose that 〈a1, . . . , an, A〉, 〈b1, . . . , bm, B〉 ∈ PF∗/H can’t be balanced. Then

〈a1, . . . , an〉, 〈b1, . . . , bm〉 could be extended to Prikry sequences 〈an : n < ω〉,

〈bn : n < ω〉 for PF∗ , which have a finite intersection, such that –

V [〈an : n < ω〉] = V [〈bn : n < ω〉]

In particular, for some n < ω, there exists a non-trivial projection of F ∗n onto

F ∗.

Proof. Let p = 〈a1, . . . , an′ , A′〉, q = 〈b1, . . . , bm′ , B′〉 be some extensions of the

given sequences, in PF∗/H, such that, there exists an isomorphism σ ∈ V [H],

σ : (PF∗/H) /p → (PF∗/H) /q. Extend both p, q to generic Prikry sequences

for PF∗/H, 〈an : n < ω〉, 〈bn : n < ω〉, such that the image of one under σ gives

the other. Then V [〈an : n < ω〉] = V [〈bn : n < ω〉], since σ ∈ V [H]. But the

Prikry sequences 〈an : n < ω〉, 〈bn : n < ω〉 have a finite intersection (because

the original sequences cannot be balanced). Therefore, by theorem 2.2.2, there

exists a non-trivial projection of F ∗n onto F ∗, for some n < ω.

Lemma 2.3.4. Assume that every pair of elements of PF∗/H can be balanced,

and that PF∗/H satisfies the following property:

(∗) For every 〈a1, . . . , an, X〉,〈b1, . . . , bm, X〉 ∈ PF∗/H with h(an) = h(bm),

and for every x1, . . . xk ∈ X and C ⊆ X, 〈a1, . . . , an, x1, . . . , xk, C〉 ∈

PF∗/H if and only if 〈b1, . . . , bm, x1, . . . , xk, C〉 ∈ PF∗/H.
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Then PF∗/H is cone-homogeneous.

Proof. Assume that 〈a1, . . . , an, A〉, 〈b1, . . . , bm, B〉 are two elements in PF∗/H.

〈a1, . . . , an, A〉 can be extended to a Prikry sequence of the quotient forcing,

〈ai : i < ω〉. By lemma 2.1.9, there exists n0 > n such that for every i ≥ n0,

ai ∈ B. Therefore, 〈a1, . . . , an0
, A ∩ B〉 belongs to the quotient forcing (in-

deed, if G is the generic set for PF∗/H, which corresponds to 〈ai : i < ω〉,

then G is generic over PF∗ as well; Thus 〈a1, . . . , an0 , A ∩ B〉 ∈ G. In par-

ticular, 〈a1, . . . , an0 , A ∩ B〉 belongs to PF∗/H). Similarly, 〈b1, . . . , bm, B〉 can

be extended to 〈b1, . . . , bm0
, A ∩ B〉 that belongs to the quotient forcing. We

can balance 〈a1, . . . , an0
, A ∩ B〉 and 〈b1, . . . , bm0

, A ∩ B〉, and find extensions

〈a1, . . . , an′ , A∩B〉 and 〈b1 . . . , bm′ , A∩B〉, such that h(an′) = h(bm′). Now we

simply apply (∗) to get the required isomorphism:

〈a1, . . . , an′ , x1, . . . , xk, C〉 7→ 〈b1, . . . , bm′ , x1, . . . , xk, C〉

The condition (∗) of lemma 2.3.4 will hold in the natural examples which

will be considered.

2.4 Forcing A Club Disjoint From Inaccessibles

Let us consider an example. In this section, consider–

Q = {X ⊆ κ : X is closed, bounded in κ,

and doesn’t contain any inaccessible cardinal}

Ordered by X1 <Q X2 ⇐⇒ X2 ∩ (maxX1 + 1) = X1. This forcing is designed

to turn κ into a non-Mahlo cardinal, preserving inaccessibles below it.

Notation. We use the following notation throughout this section: For every set

Z of ordinals,

Z = Z ∪ {α ≤ sup (Z) : sup (Z ∩ α) = α}

Lemma 2.4.1. 〈Q,<〉 is κ-distributive.

Proof. Assume ξ < κ, and let f : ξ → ON belong to V [H], where H ⊆ Q is Q-

generic over V . It suffices to prove that f ∈ V . Assume without loss of generality
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that the weakest condition in Q forces that f
∼

is a Q-name for a sequence on

ordinals of length ξ̌. Let q ∈ Q, and let p0 ∈ Q be such that max(p0) > ξ,

p0 ≥ q and p0 
 f
∼

(0̌) = τ̌0 for some ordinal τ0. Proceed by induction. Assume

pβ , τβ are chosen for every β < α, where α ≤ ξ. If α = α∗ + 1 is a successor,

pick some ordinal τα and pα ≥ pα∗ , such that pα 
 f
∼

(α̌) = τ̌α. If α is limit, let–

p∗α =
⋃
ξ<α

pξ =

( ⋃
ξ<α

pξ

)
∪ sup

( ⋃
ξ<α

pξ

)
(we claim that p∗α is a legitimate element of Q: It suffices to prove that max (p∗α)

is not an inaccessible. We note that max (p∗α) > ξ, since max(p0) > ξ. If

max (p∗α) was an inaccessible, it was above ξ, with cofinality ≤ cf(α) ≤ α ≤ ξ,

contradicting regularity). Now, pick some pα ≥ p∗α such that f
∼

(α̌) is decided

to be some ordinal τα. This finishes the construction.

We can repeat this construction above any q ∈ Q, so the elements of Q which

force that f ∈ V form a dense subset, and therefore intersect the generic set H.

It follows that f ∈ V .

Note that |Q| = κ. Let F ∗ be a κ-complete ultrafilter which extends F ,

the filter of dense open subsets of Q. As before, let π : Q → κ be such that

[π]F∗ = κ. Define the mapping h : Q → κ by x 7→ sup(x) = max(x). Let

G ⊆ PF∗ be generic over V , and assume that 〈pn : n < ω〉 is the corresponding

Prikry sequence.

Proposition 2.4.2. In V [G], define H∗ = {C∗ ∩ α : α < κ}, where C∗ =⋃
n<ω p

∗
n, and p∗n is defined recursively, as follows:

p∗n =

{
p0 n = 0

pn \max(p∗n−1) n > 0
(2.1)

Then H∗ is Q-generic over V . In particular, there exists a PF∗-name H
∼
∗, such

that the weakest condition in PF∗ forces that H
∼
∗ is Q-generic over V . Moreover,(

H
∼
∗
)
G

= H∗.

Proof. We prove first that H∗ is Q-generic over V . The only non trivial property

is that H∗ intersects every dense open subset of Q. Let D ⊆ Q be a dense open

subset. Let –

E = {〈q1, . . . , qn, A〉 ∈ PF∗ :
⋃n
i=1 q

∗
i ∈ D}
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where q∗i are defined as in equation 2.1. We claim that E ⊆ PF∗ is dense. This

promises that H∗ ∩D 6= ∅: Simply take some 〈p1, . . . , pm, A〉 ∈ G ∩ E. So, for

α = max(pm),

C∗ ∩ α =

m⋃
i=1

p∗i ∈ H∗ ∩D

as desired.

As for the density of E: Assume that 〈q1, . . . , qn, A〉 ∈ PF∗ , and let δ =

max (qn) + 1. Define a subset of D:

Dδ = {p ∈ D : ∀Z ⊆ δ (p \ δ) ∪ Z ∈ D}

Then –

Dδ =
⋂
Z⊆δ

Dδ(Z)

Where Dδ(Z) = {p ∈ D : (p \ δ) ∪ Z ∈ D}.

Now, given Z ⊆ δ, Dδ(Z) is dense and open. It’s simple to prove that

Dδ(Z) is open. For density, take p ∈ Q, let p′ ∈ D be some extension of

(p \ δ) ∪ Z. Now, let p′′ ∈ D be some extension of (p′ \ δ) ∪ p. Then p′′ >Q p,

and p′′ ∈ Dδ(Z).

If δ < κ, then 2|δ| < κ, since κ is inaccessible; Thus, by κ-distributivity of

Q, Dδ is dense and open. Therefore Dδ ∈ F ∗. Choose some q ∈ Dδ ∩ A, such

that π(q) > δ. So –

〈q1, . . . , qn, A〉 ≤ 〈q1, . . . , qn, q, A〉

and – (
n⋃
i=1

q∗i

)
∪ (q \ δ) ∈ D

so 〈q1, . . . , qn, q, A〉 ∈ E. This shows that E is dense in PF∗ , and proves that

H∗ is, indeed, Q-generic over V .

Clearly, there exists a PF∗ -name H
∼
∗ which is forced, by some condition

in PF∗ , to be Q-generic over V ; But we would like to choose H
∼
∗ such that

it’s genericity is forced by the weakest condition of PF∗ . This could be done

using the maximal principle (see [6]): Let φ(x) be a formula which defines x

from the canonical name of the generic set, in the same way H∗ was defined

from 〈pn : n < ω〉. The weakest condition of PF∗ forces ∃xφ(x), so by the

maximal principle, there exists a PF∗ -name H
∼
∗, for which φ(H

∼
∗) is forced by

every condition.
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By distributivity of Q, every inaccessible cardinal below κ in V , remains

inaccessible in V [H∗]. It’s not hard to see that C∗ = ∪H∗ is a club disjoint

from the set of inaccessibles below κ. So κ is not Mahlo in V [H∗].

Proposition 2.4.2 implies the existence of the quotient forcing, which we will

denote PF∗/C
∗. Note that PF∗/C

∗ is a non-trivial forcing notion, since, in

V [H∗], κ is still regular.

Remark 2.4.3. Let us define the quotient forcing in a formal way. Denote by

RO(Q) the completion of Q to a complete boolean algebra, and let i : Q→ RO(Q)

be the corresponding dense embedding (to simplify notations, we write RO(Q)

instead RO(Q) \ {1RO(Q)}). Then –

{q ∈ RO(Q) : for some p ∈ H∗, i(p) extends q}

is RO(Q)-generic over V , and belongs to V [H∗]. Thus, there exists a projection

π : PF∗ → RO(Q), and we can define in V [H∗] the quotient forcing:

PF∗/C
∗ = {q ∈ PF∗ : for some p ∈ H∗, i(p) extends π(q)} (2.2)

The Definition of the quotient forcing in formula 2.2 is rather abstract, and

it’s hard to give a more explicit characterisation of PF∗/C
∗. Nevertheless, we

can state some useful properties:

Lemma 2.4.4. Assume that 〈a0, . . . , an, A〉 ∈ PF∗/C∗. Define, for every i ≤ n,

an element a∗i ∈ Q, as follows:

a∗i =

{
a0 i = 0

ai \max(a∗i−1) i > 0

Then –
n⋃
i=1

a∗i = C∗ ∩ (max (an) + 1)

Moreover, for every α < κ, there exists an extension 〈a0, . . . , an′ , A′〉 ∈ PF∗/C∗

of 〈a0, . . . , an, A〉, such that – n′⋃
i=1

a∗i

 ∩ α = C∗ ∩ α

Proof. We prove the “moreover” part, which implies that–

n⋃
i=1

a∗i = C∗ ∩ (max (an) + 1)
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by taking α = max (an) + 1.

Assume that α < κ. Let G′ ⊆ PF∗/C
∗ be a generic set for the quotient

forcing, such that 〈a0, . . . , an, A〉 ∈ G′. Assume that 〈ai : i < ω〉 is the corre-

sponding Prikry sequence. By lemma 0.2.5,

C∗ =
⋃
i<ω

a∗i

(a∗i for i > n are defined in the same way). Let 〈a0, . . . , an′ , A′〉 ∈ G′ be some

element with max an′ ≥ α. Then – n′⋃
i=1

a∗i

 ∩ α = C∗ ∩ α

Our goal in this section is to show that in PF∗/C
∗ there are many pairs of

elements which cannot be balanced. This will be proved in proposition 2.4.7,

and will be applied in theorem 2.4.8.

We use standard notations: Consider the ultrapower Ult (V, F ∗). For a

function f : Q → κ, we denote by [f ]F∗ the standard equivalence class of f

in the ultrapower construction. Recall that π : Q → κ is a function such that

[π]F∗ = κ. Let Id : Q → Q be the identity function. For ordinals α, β, denote

[α, β] = {γ ≤ β : γ ≥ α}, (α, β) = {γ < β : γ > α}.

Proposition 2.4.5. There exists a function π∗ : Q→ κ, an ordinal α∗ < κ and

a set E ∈ F ∗ such that:

1. For every x ∈ E, max(x) > π∗(x) ≥ π(x)

2. For every x ∈ E, x ∩ π∗(x) = x ∩ π(x)

3. For every x ∈ E, π∗(x) < min(x \ α∗)

4. For every p, q ∈ E, if max(p) = max(q), and –

p ∩ [π(p),max(p)] = q ∩ [π(p),max(p)]

then π∗(p) = π∗(q).
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Proof. We begin by constructing a sequence of functions, hi : Q→ κ, πi : κ→ κ

for every i ≤ n, where n < ω will be decided in the construction. We make sure

during the construction that [hi]F∗ > κ and for every α < κ, πi(α) < α. Also,

we define π∗i = πi ◦ hi.

Take h0(x) = max(x). Note that [h0]F∗ > κ (equality cannot hold since the

image of h doesn’t contain any inaccessible cardinals). Define W0 = (h0)∗ F
∗,

and let π0 : κ → κ be a function such that [π0]W0
= κ. Then [π0]W0

< [Id]W0

(since otherwise, W0 was a normal ultrafilter, concentrating on the set of inacces-

sibles, and thus, for some x ∈ Q, h0(x) = max(x) was inaccessible). Therefore,

{α < κ : π0(α) < α} ∈ W0, and by changing π0 on a set outside W0, we can

assume that for every α < κ, π0(α) < α.

Assume that hi was constructed, such that [hi]F∗ > κ. Let us define hi+1.

Set Wi = (hi)∗ F
∗. Then Wi is a non-trivial ultrafilter. Let πi : κ → κ be a

function, such that [πi]Wi
= κ. Denote π∗i = πi ◦ hi. Note that –

{α ∈ κ : πi(α) is inaccessible} ∈Wi

and thus –

{x ∈ Q : π∗i (x) is inaccessible} ∈ F ∗

so [π∗i ]F∗ is inaccessible, and therefore [Id]F∗∩[π∗i ]F∗ is bounded in [π∗i ]F∗ (since

[Id]F∗ is closed and disjoint from inaccessibles). If –

max ([Id]F∗ ∩ [π∗i ]F∗) < κ

finish the construction, and fix some α∗ < κ such that –

[Id]F∗ ∩ [π∗i ]F∗ ⊆ α
∗

Else, define, for every x ∈ Q, hi+1(x) = max (x ∩ π∗i (x)), and note that [hi+1]F∗ >

κ (equality cannot hold, since κ is inaccessible).

We claim that this construction must stop after finitely many steps. It’s

enough to argue that if the construction doesn’t stop, then for every i < ω,[
π∗i+1

]
F∗

< [π∗i ]F∗ (so [π∗i ]F∗ is a strictly decreasing sequence of ordinals in the

ultrapower, and thus necessarily finite). Indeed, for every x in some set in F ∗,

π∗i+1(x) = πi+1 (hi+1(x)) < hi+1(x) = max (x ∩ π∗i (x)) < π∗i (x)
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Assume that n < ω is the maximal such that π∗n is defined. Denote π∗ = π∗n.

Note that [π∗n]F∗ ≥ κ, since π∗n projects F ∗ into a non-trivial ultrafilter. Thus,

[Id]F∗ ∩ [π∗]F∗ = [Id]F∗ ∩ κ

Take a set E ∈ F ∗ such that for every x ∈ E,

1. π∗(x) is inaccessible.

2. x ∩ π∗(x) ⊆ α∗

3. x ∩ π∗i (x) = x ∩ π(x) ⇐⇒ i = n

4. max(x) ≥ π∗1(x) > . . . > π∗n(x) ≥ π(x)

Assume that p, q ∈ E, max(p) = max(q) and p ∩ [π(p),max(p)] = q ∩

[π(p),max(p)]. Suppose that i < n, π∗i (p) = π∗i (q), and let us prove that

π∗i+1(p) = π∗i+1(q). It suffices to prove that hi(p) = hi(q). This is clear for

i = 0. For i > 0, note that –

max (p ∩ π∗i (p)) = max (q ∩ π∗i (q)) (2.3)

indeed, since i < n, p ∩ π∗i (p) 6= p ∩ π(p), so p ∩ [π(p), π∗i (p)] 6= ∅. But –

p ∩ [π(p),max(p)] = q ∩ [π(p),max(p)]

and π∗i (q) = π∗i (p) ≥ π(p), so –

p ∩ [π(p), π∗i (p)] = q ∩ [π(p), π∗i (q)] 6= ∅

and 2.3 follows.

Now, let us prove that for every x ∈ E, π∗(x) < min (x \ α∗). It’s clear

that the equality π∗(x) = min (x \ α∗) cannot hold, since π∗(x) is inaccessible.

Thus, it suffices to prove that π∗(x) ≤ min (x \ α∗). This is clear as well, since

otherwise,

min (x \ α∗) ∈ x ∩ π∗(x) ⊆ α∗

Lastly, for every x ∈ E, max(x) 6= π∗(x) (because π∗(x) is inaccessible), and

thus max(x) > π∗(x).

Lemma 2.4.6. The following set is dense in PF∗/C
∗:

D = {〈~q,X〉 : {max(a) : 〈~q, a,X〉 ∈ PF∗/C∗} is unbounded in κ}
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Proof. Suppose otherwise. Let 〈~q,X〉 ∈ PF∗/C
∗ be an element which has no

extension in D. Define, for every n < ω,

Sn = {max(s) : for some ~p ∈ JQKn, 〈~q_~p_〈s〉, X〉 ∈ PF∗/C∗}

Let us argue, by induction on n, that |Sn| < κ. For n = 0 this is clear. Assume

that |Sn| < κ. Let α < κ be some upper bound of Sn (we work in V [H∗], where

κ is still regular, so Sn is bounded in κ). Let–

A = {~p ∈ JQKn : max (mc(~p)) ≤ α and 〈~q_~p,X〉 ∈ PF∗/C∗}

Note that |A| < κ, since there are less then κ sequences ~p ∈ JQKn with

max (mc(~p)) ≤ α. Also, for every ~p ∈ A, 〈~q_~p,X〉 extends 〈~q,X〉, and thus

doesn’t belong to D. Therefore, there exists an upper bound τ(~p) < κ for the

set–

{max(a) : 〈~q_~p_〈a〉〉 ∈ PF∗/C∗}

Let τ < κ be an upper bound for the set {τ(~p) : ~p ∈ A}. Thus–

|Sn+1| < κ

(since every element in Sn+1 has a maximum less then τ), as required.

Denote S = ∪
n<ω

Sn. Then S is bounded in κ, assume that by some β < κ.

Extend 〈~q,X〉 to a generic set G′ for PF∗/C
∗. Then G′ is generic for PF∗ as

well, but is disjoint from the dense set {〈~p,A〉 ∈ PF∗ : max(mc(~p)) > β}.

Proposition 2.4.7. In PF∗/C
∗, every element has at least two extensions which

cannot be balanced.

Proof. Let 〈q0, . . . , ql, X〉 ∈ PF∗/C∗ be an arbitrary element. Fix a set E ∈ F ∗

and an ordinal α∗ < κ as in proposition 2.4.5, i.e., such that –

1. For every x ∈ E, max(x) > π∗(x) ≥ π(x)

2. For every x ∈ E, x ∩ π∗(x) = x ∩ π(x)

3. For every x ∈ E, π∗(x) < min(x \ α∗)

4. For every p, q ∈ E, if max(p) = max(q), and –

p ∩ [π(p),max(p)] = q ∩ [π(p),max(p)]
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then π∗(p) = π∗(q).

Extend 〈q0, . . . , ql, X〉 ∈ PF∗/C∗ to a Prikry generic sequence for PF∗/C
∗,

〈qn : n < ω〉. By claim 2.1.9, there exists k < ω such that for every k′ ≥ k, qk′ ∈

E. Therefore, 〈q0, . . . , qk, E′〉 belongs to PF∗/C
∗ and extends 〈q0, . . . , ql, X〉,

for some E′ ⊆ E, E′ ∈ F ∗. Assume that max(qk) > α∗ (else, extend). Let D

be the dense subset from lemma 2.4.6. Assume that 〈q0, . . . , qk, E′〉 ∈ D (else,

extend). Denote ~q = 〈q0, . . . , qk〉. Let–

s =

k⋃
i=0

q∗i

where q∗i is defined as in equation 2.1.

Assume that 〈~q, a1, . . . , an, A〉 and 〈~q, b1, . . . , bm, B〉 both extend 〈~q,E′〉 in

PF∗/C
∗, such that max(a1) 6= max(b1) (such a1, b1 exists since 〈~q,E′〉 ∈ D).

We prove that max(ai) 6= max(bj) for every i, j. Assume the contrary, and let

n ∈ N be the least index such that for some m ∈ N, max(an) = max(bm). Take

the least such m. It follows that –

s ∪

(
n⋃
i=1

a∗i \max(s)

)
= s ∪

(
m⋃
i=1

b∗i \max(s)

)
(2.4)

(by lemma 2.4.4). Consider the following cases:

1. m = 1, n > 1 : By equation (2.4),

an ∩ (max(an−1),max(an)] = b1 ∩ (max(an−1),max(an)]

Now, since π(an) ∈ (max(an−1),max(an)), it follows that –

an ∩ [π(an),max(an)] = b1 ∩ [π(an),max(an)]

and thus π∗(an) = π∗(b1). But this is a contradiction because –

π∗(b1) < min (b1 \ α∗) ≤ max (an−1) < π∗(an)

(min (b1 \ α∗) ≤ max (an−1) follows since max (an−1) ∈ b1 \ α∗, by 2.4).

2. n = 1,m > 1 : Simply use a symmetric argument to get a contradiction.

3. m > 1, n > 1 : By minimality of m,n,

max (an−1) 6= max (bm−1)
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Assume without loss of generality that max (an−1) > max (bm−1). By

equation (2.4),

an ∩ (max(an−1),max(an)] = bm ∩ (max(an−1),max(an)]

and since π(an) ∈ (max(an−1),max(an)), it follows that –

an ∩ [π(an),max(an)] = bm ∩ [π(an),max(an)]

and thus π∗(an) = π∗(bm). Therefore,

max (an−1) = max (C∗ ∩ π∗(an)) = max (C∗ ∩ π∗(bm)) = max (bm−1)

a contradiction.

Theorem 2.4.8. Suppose that PF∗/C
∗ is cone-homogeneous. Then PF∗ has a

generic extension which contains a set 〈〈ξαn : n < ω〉 : α < κ〉 of pairwise disjoint

Prikry sequences for PF∗ .

Proof. Begin as in the last proposition: Let 〈ξ0, . . . , ξl, X〉 ∈ PF∗/C
∗ be an

arbitrary element in the quotient forcing. Take E ∈ F ∗ and α∗ < κ as in

proposition 2.4.5. Find an extension 〈~ξ, E′〉 = 〈ξ0, . . . , ξm, E′〉 ∈ PF∗/C
∗ of

〈ξ0, . . . , ξl, X〉 such that E′ ⊆ E, and such that the following holds: There

exists a set A,

A ⊆ {a : 〈~ξ_〈a〉, E′〉 ∈ PF∗/C∗}

for which {max(a) : a ∈ A} is unbounded in κ (this is possible due to lemma

2.4.6). Then |A| = κ, since κ is still regular in V [H∗], and by shrinking A, we

can assume that a 6= a′ ∈ A→ max(a) 6= max(a′). Enumerate A = 〈aα : α < κ〉.

For every α < κ, denote pα = 〈~ξ_〈aα〉, E′〉 ∈ PF∗/C
∗. As in the last

proposition, note that for α 6= α′, pα, pα′ cannot be balanced. Moreover, if we

extend such pα, pα′ to generic Prikry sequences for the quotient forcing, those

sequences will be disjoint (aside from the constant initial segment ~ξ that they

share).

Define–

Dα = {q ∈ PF∗/C∗ : for some extension p′ of pα, (PF∗/C
∗) /q ' (PF∗/C

∗) /p′}
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(where ' denotes isomorphism between forcing notions). Then for every α < κ,

Dα is dense in PF∗/C
∗, by cone-homogeneity of PF∗/C

∗. Enumerate–

~D = 〈Dα : α < κ〉

For every α < κ and q ∈ Dα, fix an isomorphism σα(q) ∈ V [H∗] between

(PF∗/C
∗) /q and (PF∗/C

∗) /p′, for some p′ above pα.

Extend p0 to a generic Prikry sequence for PF∗/C
∗, with a corresponding

generic set G0. G0 is a generic set for PF∗ over V as well. Work in V [G0]. Note

that the enumerations 〈pα : α < κ〉, 〈Dα : α < κ〉 and 〈σα(q) : α < κ, q ∈ Dα〉

belong to V [G0].

For every 0 < α < κ, G0 ∩Dα 6= ∅, because G0 is generic for PF∗/C
∗ over

V [C∗], and Dα ∈ V [C∗] is a dense subset. Let gα ∈ PF∗/C∗ be an element in

the intersection. Then the downwards closure, in PF∗/C
∗, of the set–

{(σα (gα)) (p) : p ∈ G0 and p extends gα}

is a generic set for PF∗/C
∗ over V [C∗] which contains pα; Denote it by Gα.

Note that–

〈Gα : 0 < α < κ〉 ∈ V [G0]

Each Gα induces a generic Prikry sequence 〈ξαn : n < ω〉 for the quotient forcing.

Those are generic Prikry sequences for PF∗ over V as well; We can assume that

the sequences 〈〈ξαn : n < ω〉 : α < κ〉 are pairwise disjoint, by removing, from

each one, the constant initial segment of length m that they all share (after

removing the initial segments, each sequence will remain a Prikry sequence for

PF∗ , not for PF∗/C
∗).

Corollary 2.4.9. Suppose that F ∗ is an ultrafilter which extends the filter of

dense open subsets of Q, and such that the quotient forcing PF∗/C
∗ is homo-

geneous. Then for some n < ω, there are κ-many non-equivalent, non-trivial

projections of F ∗n onto F ∗.

Proof. This is immediate from theorem 2.4.8 and proposition 2.2.10.

2.5 Cohen’s Forcing

In this section, let us consider Q = {X ⊆ κ : sup(X) < κ}, ordered by X1 <Q

X2 ⇐⇒ X2 ∩ (maxX1 + 1) = X1. Clearly, Q is κ-closed. This forcing could
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be densely embedded in the standard Cohen’s forcing,

Cohen(κ) = {f : A→ 2 : A ⊆ κ and |A| < κ}.

(which is ordered by inclusion), so it generates the same generic extensions. In

our context, it’s simpler to use 〈Q,<Q〉; Therefore, in this section, we refer to

it as Cohen’s forcing, instead of Cohen(κ).

As before, let F be the filter generated by the dense open subsets of Q.

Assume κ is κ-compact, and let F ∗ be a κ-complete ultrafilter extending F .

Let π : Q → κ represent κ in the ultrapower. Let h : Q → κ be the function

h(x) = sup(x).

Consider the forcing PF∗ . Suppose that 〈pn : n < ω〉 is a Prikry sequence

for PF∗ , with a corresponding generic set G over V . Set–

H∗ = {C∗ ∩ α : α < κ}

where C∗ =
⋃
n<ω p

∗
n, and p∗n are defined recursively, as follows:

p∗n =

{
p0 n = 0

pn \
(
sup(p∗n−1) + 1

)
n > 0

(2.5)

Proposition 2.5.1. H∗ ∈ V [G] is Q-generic over V . In particular, there

exists a P -name H
∼
∗, such that the weakest condition in PF∗ forces that H

∼
∗ is

Q-generic over V . Moreover,
(
H
∼
∗
)
G

= H∗.

Proof. We repeat the proof of proposition 2.4.2 with minor changes. Given a

dense open subset D ⊆ Q, let–

E = {〈q1, . . . , qn, A〉 ∈ PF∗ :
⋃n
i=1 q

∗
i ∈ D}

Then it suffices to prove that E is dense in PF∗ . Indeed, given 〈q0, . . . , qn, A〉 ∈

PF∗ , let δ = sup (qn) + 1. Define a subset of D:

Dδ = {p ∈ D : ∀Z ⊆ δ (p \ δ) ∪ Z ∈ D}

then Dδ is dense and open; Take q ∈ A ∩Dδ with π(q) > sup (qn). Then–

(q \ δ) ∪

(
n⋃
i=1

q∗i

)
∈ D

as desired.
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From the last proposition, it follows that the quotient forcing PF∗/C
∗ could

be defined the same way as in the last section. In particular, the following

property holds:

Lemma 2.5.2. Assume that 〈a0, . . . , an, A〉 ∈ PF∗/C∗. Define, for every i ≤ n,

an element a∗i ∈ Q, as follows:

a∗i =

{
a0 i = 0

ai \
(
sup(a∗i−1) + 1

)
i > 0

then –
n⋃
i=1

a∗i = C∗ ∩ (sup (an) + 1)

Moreover, for every α < κ, there exists an extension 〈a0, . . . , an′ , A′〉 ∈ PF∗/C∗

of 〈a0, . . . , an, A〉, such that – n′⋃
i=1

a∗i

 ∩ α = C∗ ∩ α

Proof. Follow the same proof as in lemma 2.4.4 in order to prove the “moreover”

part. The first part follows by taking α = sup(an) + 1.

Let us argue that PF∗/C
∗ satisfies the property (∗) of lemma 2.3.4.

Lemma 2.5.3. For every 〈a0, . . . , an, X〉 , 〈b0, . . . , bm, X〉 ∈ PF∗/C
∗ with

sup(an) = sup(bm), and for every x0, . . . , xk ∈ X and A ⊆ X,

〈a0, . . . , an, x0, . . . , xk, A〉 ∈ PF∗/C∗ ⇐⇒ 〈b0, . . . , bm, x0, . . . , xk, A〉 ∈ PF∗/C∗

Proof. Let σ : PF∗/〈a0, . . . , an, X〉 → PF∗/〈b0, . . . , bm, X〉 be the isomorphism–

σ (〈a0, . . . , an, x0, . . . , xk, A〉) = 〈b0, . . . , bm, x0, . . . , xk, A〉

(note that without the assumption that sup(an) = sup(bm), σ is not an iso-

morphism, since σ (〈a0, . . . , an, x0, . . . , xk, A〉) is not necessarily an element of

PF∗).

Let p = 〈a0, . . . , an, x0, . . . , xk, A〉, q = σ(p) = 〈b0, . . . , bm, x0, . . . , xk, A〉 be

extensions of 〈a0, . . . , an, X〉 , 〈b0, . . . , bm, X〉, respectively. Let us prove that

p ∈ PF∗/C∗ ⇐⇒ q ∈ PF∗/C∗. Its enough to show that π(p) = π(q), where π

is the standard projection π : PF∗ → RO(Q). It suffices to argue that, for every

a ∈ Q,

q 
 ǎ ∈ H
∼
∗ ⇐⇒ p 
 ǎ ∈ H

∼
∗
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By symmetry, it’s enough to prove one direction only. Assume that a ∈ Q,

q 
 ǎ ∈ H
∼
∗. Let G′ ⊆ PF∗ be generic over V such that p ∈ G′. Our goal is to

prove that a ∈
(
H
∼
∗
)
G′

. Define –

G′′ = {r ∈ PF∗ : ∃p′ ∈ G′ ∩ (PF∗/p) , r ≤ σ(p′)}

Then G′′ is PF∗ -generic over V : Indeed, given D ⊆ PF∗ dense,

σ−1 (D ∩ (PF∗/q))

is dense above p. Now, p ∈ G′, so for some s ∈ G′, s > p and σ(s) ∈ D∩G′′. The

other properties needed to be checked for genericity of G′′ are straightforward.

Since q ∈ G′′, it follows that a ∈
(
H
∼
∗
)
G′′

. So its enough to argue that(
H
∼
∗
)
G′′

=
(
H
∼
∗
)
G′

. Assume that –

〈a0, . . . , an〉_〈xi : i < ω〉

is the Prikry sequence corresponding to G′. Then –

〈b0, . . . , bm〉_〈xi : i < ω〉

is the Prikry sequence corresponding to G′′. Let –

s =

n⋃
i=0

a∗i =

m⋃
i=0

b∗i

(the equality follows from lemma 2.4.4). Denote –

C∗∗ = s ∪

((⋃
i<ω

x∗i

)
\ (sup(s) + 1)

)

Then – (
H
∼
∗
)
G′

= {C∗∗ ∩ β : β < κ} =
(
H
∼
∗
)
G′′

Recall that property (∗) above could be used to prove cone-homogeneity of

PF∗/C
∗, under the assumption that every pair of elements in PF∗/C

∗ could be

balanced. This might depend on F ∗. Currently, we don’t know if under some

choice of F ∗, every pair of elements could indeed be balanced. We actually

could modify F ∗ such that there are many elements in PF∗/C
∗ which cannot be

balanced, and we will do so in this section; In any case, Modifying F ∗ will require
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κ to satisfy more than κ-compactness, and we will assume 2κ-supercompactness

of κ.

Assume that κ is 2κ-supercompact. Therefore, there exists a definable em-

bedding j : V → M such that crit(j) = κ, 2κ < j(κ) and 2κM ⊆ M . Work

in M . For every dense open E ⊆ Q, j(E) is dense open in j(Q), which is

j(κ)-distributive. Therefore,

D∗ =
⋂

E⊆Q dense open

j(E) (2.6)

is a dense open subset of j(Q) (we note that it’s an intersection of a 2κ-sequence

of elements of M , which belongs to M).

Definition 2.5.4. For every p ∈ D∗, define an ultrafilter Fp on Q as follows:

∀X ⊆ Q X ∈ Fp ⇐⇒ p ∈ j(X)

Fp is a κ-complete ultrafilter on Q which extends F , the κ-complete filter

generated by the dense-open subsets of Q,

F = {E ⊆ Q : X ⊆ E for some dense open subset X of Q}

Given p ∈ D∗, let Mp ' Ult(V, Fp) be the transitive collapse of the ultra-

power, and jp : V → Mp be the corresponding elementary embedding. Define

an elementary embedding kp : Mp →M ,

kp
(
jp(f)([Id]Fp)

)
= j(f)(p)

for every f : Q→ V . Then kp ◦ jp = j, and kp([Id]Fp) = p.

Remark 2.5.5. For every p ∈ D∗, p ∩ κ = [Id]Fp ∩ κ.

Proof. Clearly p ∩ κ ⊆ kp(p) ∩ κ, since for every α < κ, kp(α) = α. Now, given

α ∈ kp(p) ∩ κ, note that kp(α) = α ∈ kp(p), so, by elementarity, α ∈ p ∩ κ.

Before describing a general method to choose F ∗, such that many elements

cannot be balanced in the quotient forcing, we state the following lemma:

Lemma 2.5.6. The following set is dense in PF∗/C
∗:

D = {〈~q,X〉 : {sup(a) : 〈~q, a,X〉 ∈ PF∗/C∗} is unbounded in κ}
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Proof. Repeat the proof of lemma 2.4.6.

Theorem 2.5.7. Assume that κ is 2κ-supercompact. There exists a κ-complete

ultrafilter F ∗ which extends the filter of dense open subsets of Q, such that

[Id]F∗ ∩ κ is bounded in κ, and every condition in PF∗/C
∗ has two extensions

which cannot be balanced.

Moreover, if PF∗/C
∗ is cone-homogeneous, then PF∗ has a generic extension

which contains a set 〈〈ξαn : n < ω〉 : α < κ〉 of pairwise disjoint Prikry sequences

for PF∗ .

Proof. We prove that there are a κ-complete ultrafilter F ∗, a set E ∈ F ∗, an

ordinal α∗ < κ and a function π : Q → κ, such that F ∗ extends the filter of

dense open subsets of Q, and –

1. [π]F∗ = κ

2. For every x ∈ E, x has a maximum max(x).

3. For every x ∈ E, max(x) ≥ π(x)

4. For every x ∈ E, π(x) < min(x \ α∗)

5. For every p, q ∈ E, if max(p) = max(q) then π(p) = π(q).

Let I ⊆ κ be a bounded subset. Let α∗ < κ be such that sup(I) < α∗. Define–

D∗∗ = {p ∈ D∗ : p ∩ κ = I}

(where D∗ is the dense open subset of j(Q), defined in equation (2.6)). It’s clear

that D∗∗ is open, since D∗ is open. D∗∗ is not dense, but it is dense and open

above I ′ = I ∪ {κ+ 1}.

In V , let 〈Aα : α < κ〉 be a partition of κ to pairwise disjoint unbounded

subsets. Denote j (〈Aα : α < κ〉) = 〈A′α : α < j(κ)〉. There exists an extension

p of I ′ such that p has a maximum, max(p) ∈ A′κ and p ∈ D∗∗. Let F ∗ = Fp.

Let π : Q→ κ be defined as follows:

π(x) = α ⇐⇒ sup(x) ∈ Aα

(it’s well defined, since 〈Aα : α < κ〉 is a partition of κ). Clearly, for every

p, q ∈ Q,

sup(p) = sup(q)→ π(p) = π(q)
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Note that p ∈ j ({x ∈ Q : max(x) exists}). So–

E1 = {x ∈ Q : max(x) exists} ∈ F ∗

Therefore, for every p, q ∈ E1, max(p) = max(q)→ π(p) = π(q).

Next, we note that the property j(π)(p) = κ implies [π]F∗ = κ. Also,

j(π)(p) < min (p \ α∗) implies that–

p ∈ j ({x ∈ Q : π(x) < min (x \ α∗)})

so–

E2 = {x ∈ Q : π(x) < min (x \ α∗)} ∈ F ∗

Finally, for every β < κ,

{x ∈ Q : sup(x) > β} ∈ F ∗

so–

E3 = {x ∈ Q : sup(x) ≥ π(x)} ∈ F ∗

Take E = E1 ∩ E2 ∩ E3 to get the required properties, 1− 5 above. Note that

these properties, together with lemma 2.5.6, are enough to argue that, under

the cone-homogeneity assumption about PF∗/C
∗, PF∗ has a generic extension

which contains a set 〈〈ξαn : n < ω〉 : α < κ〉 of pairwise disjoint Prikry sequences:

Simply repeat the proofs of proposition 2.4.7 and theorem 2.4.8.

The last theorem deals with the case where, in Ult (V, F ∗), [Id]F∗ ∩ κ is

bounded in κ. We give a similar result in the other case, where [Id]F∗ ∩ κ is

unbounded in κ.

Theorem 2.5.8. Assume that κ is 2κ-supercompact. There exists a κ-complete

ultrafilter F ∗ which extends the filter of dense open subsets of Q, such that

[Id]F∗ ∩κ is unbounded in κ, and every condition in PF∗/C
∗ has two extensions

which cannot be balanced.

Moreover, if PF∗/C
∗ is cone-homogeneous, then PF∗ has a generic extension

which contains a set 〈〈ξαn : n < ω〉 : α < κ〉 of pairwise disjoint Prikry sequences

for PF∗ .

Proof. Let us choose F ∗, a set E ∈ F ∗ and a function π : Q→ κ, such that–
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1. [π]F∗ = κ.

2. For every x ∈ E, sup(x) > π(x)

3. For every x ∈ E, x ∩ π(x) = [Id]F∗ ∩ π(x).

4. For every x ∈ E and α < sup(x), (x4 [Id]F∗)∩ (α, sup(x)) 6= ∅ (in partic-

ular, sup(x) is limit).

5. For every p, q ∈ E, if sup(p) = sup(q) then π(p) = π(q).

Assume I ⊆ κ is unbounded in κ, and let –

D∗∗ = {p ∈ D∗ : p ∩ κ = I ∧ ∀α < sup(p) ∃β > α, β < sup(p), β ∈ j(I) \ p}

(where D∗ is the dense open subset of j(Q), defined in equation (2.6)). Since

j(I) is unbounded in j(κ), D∗∗ is dense above I.

In V , let 〈Aα : α < κ〉 be a partition of κ to pairwise disjoint unbounded

subsets, where A0 is the set of inaccessibles below κ. Denote j (〈Aα : α < κ〉) =

〈A′α : α < j(κ)〉. There exists an extension p of I such that sup(p) ∈ A′κ, (in

particular, sup(p) is not an inaccessible cardinal) and p ∈ D∗∗. Take F ∗ = Fp.

Let I1 = [Id]F∗ . Then by remark 2.5.5, I = p ∩ κ = I1 ∩ κ. Thus –

p ∈ j ({q ∈ Q : ∀α < sup(q) ∃β > α, β < sup(q), β ∈ I \ q}) =

j ({q ∈ Q : ∀α < sup(q) ∃β > α, β < sup(q), β ∈ I1 \ q})

therefore, by the definition of F ∗ = Fp,

E1 = {q ∈ Q : ∀α < sup(q) ∃β > α, β < sup(q), β ∈ I14q} ∈ F ∗

Let π : Q→ κ be defined as follows: For every q ∈ Q,

π(q) = α ⇐⇒ sup(q) ∈ Aα

then [π]F∗ = κ. Thus, for every p, q ∈ Q, if sup(p) = sup(q) then π(p) = π(q).

Moreover, note that–

E2 = {x ∈ Q : x ∩ π(x) = I1 ∩ π(x)} ∈ F ∗

Indeed, if jF∗ is the ultrapower embedding of F ∗, then in Ult (V, F ∗),

I1 ∩ κ = jF∗(I1) ∩ κ
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since jF∗ � κ is the identity. Finally, clearly {x ∈ Q : sup(x) ≥ π(x)} ∈ F ∗; We

claim that E3 = {x ∈ Q : sup(x) > π(x)} ∈ F ∗. Else,

p ∈ j({x : sup(x) is an inaccessible})

a contradiction.

Take E = E1 ∩ E2 ∩ E3. Let 〈q0, . . . , ql, X〉 be an arbitrary element in

PF∗/C
∗; Extend it to 〈q0, . . . , qk, E′〉 where E′ ⊆ X ∩E, and such that the set–

A = {sup(a) : a ∈ E′ and 〈q0, . . . , qk, a, E′〉 ∈ PF∗/C∗}

is unbounded. Denote–

s =

k⋃
i=0

q∗i

(where q∗i are defined as in (2.5)). Take a1, a2 ∈ A with sup(a1) 6= sup(a2), and

let us prove that–

〈~q, a1, E′〉, 〈~q, b1, E′〉

cannot be balanced. This suffices to finish the proof, exactly as in theorem 2.4.8.

Suppose for contrary that–

〈~q, a1, . . . , an, E〉, 〈~q, b1, . . . , bm, E〉 ∈ PF∗/H∗

and sup(an) = sup(bm). Let n ∈ N be the least index such that for some m ∈ N,

sup(an) = sup(am). Take the least such m. Then, by lemma 2.5.2 –

s ∪

(
n⋃
i=1

a∗i \ (sup(s) + 1)

)
= s ∪

(
m⋃
i=1

b∗i \ (sup(s) + 1)

)
(2.7)

Let us derive a contradiction. We consider the following cases:

1. m = 1, n > 1 : Since sup(an) = sup(b1), it follows that π(an) = π(b1).

In particular, π(b1) > sup(an−1). Now, b1 ∩ π(b1) = I1 ∩ π(b1). Take an

arbitrary α ∈ (π(an−1), sup(an−1)). We remark that such α exists since

sup(an−1) is limit. By equation (2.7), and since π(b1) > sup(an−1),

(an−14I1) ∩ (α, sup(an−1)) = ∅

a contradiction.

2. n = 1,m > 1 : Apply the symmetric argument to get a contradiction.
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3. m > 1, n > 1 : Since sup(an) = sup(bm), it follows that π(an) = π(bm).

By minimality of m,n, it follows that sup(an−1) 6= sup(bm−1). Assume

without loss of generality that sup(an−1) < sup(bm−1). Take an arbitrary

α ∈ (sup(an−1), sup(bm−1)). By equation (2.7),

an ∩ (α, sup(bm−1)) = bm−1 ∩ (α, sup(bm−1)) (2.8)

But sup(bm−1) < π(an), so –

an ∩ (α, sup(bm−1)) = I1 ∩ (α, sup(bm−1)) (2.9)

Combining (2.8) and (2.9),

(bm−14I1) ∩ (α, sup(bm−1)) = ∅

a contradiction.

Corollary 2.5.9. For the ultrafilters F ∗ from theorems 2.5.7, 2.5.8, suppose

that PF∗/C
∗ is cone-homogeneous. Then there are κ-many, non-equivalent,

non-trivial projections of F ∗n onto F ∗, for some n < ω.

Proof. Combine the theorems with proposition 2.2.10.

We currently don’t know if the following interesting scenario is possible:

PF∗/C
∗ is cone-homogeneous, where F ∗ is one of the ultrafilters from theorems

2.5.7, 2.5.8. This promises a generic extension for PF∗ , which contains a set

〈〈ξαn : n < ω〉 : α < κ〉 of pairwise disjoint Prikry sequences for PF∗ . Under this

scenario, PF∗/C
∗ contains many pairs of elements which cannot be balanced,

so property (∗) of lemma 2.3.4 can’t be applied to prove cone-homogeneity.

2.6 Concluding Remarks

Suppose that V [pn : n < ω] = V [qn : n < ω], where 〈pn : n < ω〉, 〈qn : n < ω〉

are pairwise disjoint Prikry sequence for PF∗ over V . Then, as we proved, F ∗

is a non-normal ultrafilter, and, for some n < ω, F ∗n can be projected onto F ∗,

in a non-trivial way.
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Question 2.6.1. (Under suitable large cardinal axioms) Given a κ-complete

filter F on κ, could F be extended to a κ-complete ultrafilter F ∗ on κ, such that

F ∗n cannot be projected onto F ∗ in a non-trivial way, for every n < ω?

A positive answer promises that V [pn : n < ω] 6= V [qn : n < ω], whenever

〈pn : n < ω〉, 〈qn : n < ω〉 are pairwise disjoint Prikry sequences for PF∗ . An-

other question is natural from our analysis:

Question 2.6.2. Even if we allow non-trivial projections of F ∗n onto F ∗, can

we choose F ∗ such that there are less then κ such projections, up to equivalence?

Doing this for the forcing notion which adds a club disjoint from inaccessi-

bles, promises that the quotient forcing is not cone-homogeneous.

We remark that by [3], it’s consistent, from large cardinals, that for some

non-normal, κ-complete ultrafilter F on κ, there are κ many non-trivial projec-

tions of F 2 onto F .

Property (∗) from lemma 2.3.4 holds in the natural examples we considered:

The proof we gave in the last section, holds both in the context of Cohen’s

forcing, and the forcing which adds a club disjoint from inaccessibles. This is

because the generic sets for both forcing notions were created, more or less,

in the same way. However, for the forcing which adds a club disjoint from

inaccessibles, lemma 2.3.4 could not be applied to prove cone-homogeneity of

the quotient forcing, because there are many elements which cannot be balanced.

As for Cohen’s forcing:

Question 2.6.3. Suppose that Q = Cohen(κ) is Cohen’s forcing. Does there

exist a choice of a measure F ∗ which extends the filter of dense open subsets of

Q, and a generic set H ⊆ Q over V , such that every pair of elements in the

quotient forcing PF∗/H can be balanced?

A positive answer to this question, results in an homogeneous quotient forc-

ing.1

1 It looks like the negative answer is consistent. We plan to address this issue in a further
paper.
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